This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcimdv.1 | |- ( ph -> A e. B ) |
|
| rspcimdv.2 | |- ( ( ph /\ x = A ) -> ( ps -> ch ) ) |
||
| Assertion | rspcimdv | |- ( ph -> ( A. x e. B ps -> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcimdv.1 | |- ( ph -> A e. B ) |
|
| 2 | rspcimdv.2 | |- ( ( ph /\ x = A ) -> ( ps -> ch ) ) |
|
| 3 | df-ral | |- ( A. x e. B ps <-> A. x ( x e. B -> ps ) ) |
|
| 4 | simpr | |- ( ( ph /\ x = A ) -> x = A ) |
|
| 5 | 4 | eleq1d | |- ( ( ph /\ x = A ) -> ( x e. B <-> A e. B ) ) |
| 6 | 5 | biimprd | |- ( ( ph /\ x = A ) -> ( A e. B -> x e. B ) ) |
| 7 | 6 2 | imim12d | |- ( ( ph /\ x = A ) -> ( ( x e. B -> ps ) -> ( A e. B -> ch ) ) ) |
| 8 | 1 7 | spcimdv | |- ( ph -> ( A. x ( x e. B -> ps ) -> ( A e. B -> ch ) ) ) |
| 9 | 1 8 | mpid | |- ( ph -> ( A. x ( x e. B -> ps ) -> ch ) ) |
| 10 | 3 9 | biimtrid | |- ( ph -> ( A. x e. B ps -> ch ) ) |