This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplmul.p | |- P = ( I mPoly R ) |
|
| mplmul.b | |- B = ( Base ` P ) |
||
| mplmul.m | |- .x. = ( .r ` R ) |
||
| mplmul.t | |- .xb = ( .r ` P ) |
||
| mplmul.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| mplmul.f | |- ( ph -> F e. B ) |
||
| mplmul.g | |- ( ph -> G e. B ) |
||
| Assertion | mplmul | |- ( ph -> ( F .xb G ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmul.p | |- P = ( I mPoly R ) |
|
| 2 | mplmul.b | |- B = ( Base ` P ) |
|
| 3 | mplmul.m | |- .x. = ( .r ` R ) |
|
| 4 | mplmul.t | |- .xb = ( .r ` P ) |
|
| 5 | mplmul.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 6 | mplmul.f | |- ( ph -> F e. B ) |
|
| 7 | mplmul.g | |- ( ph -> G e. B ) |
|
| 8 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 9 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 10 | 1 8 4 | mplmulr | |- .xb = ( .r ` ( I mPwSer R ) ) |
| 11 | 1 8 2 9 | mplbasss | |- B C_ ( Base ` ( I mPwSer R ) ) |
| 12 | 11 6 | sselid | |- ( ph -> F e. ( Base ` ( I mPwSer R ) ) ) |
| 13 | 11 7 | sselid | |- ( ph -> G e. ( Base ` ( I mPwSer R ) ) ) |
| 14 | 8 9 3 10 5 12 13 | psrmulfval | |- ( ph -> ( F .xb G ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) ) ) |