This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number equals the difference of the real number and a positive real number modulo the positive real number. (Contributed by AV, 3-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modeqmodmin | |- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) = ( ( A - M ) mod M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modid0 | |- ( M e. RR+ -> ( M mod M ) = 0 ) |
|
| 2 | 1 | adantl | |- ( ( A e. RR /\ M e. RR+ ) -> ( M mod M ) = 0 ) |
| 3 | modge0 | |- ( ( A e. RR /\ M e. RR+ ) -> 0 <_ ( A mod M ) ) |
|
| 4 | 2 3 | eqbrtrd | |- ( ( A e. RR /\ M e. RR+ ) -> ( M mod M ) <_ ( A mod M ) ) |
| 5 | simpl | |- ( ( A e. RR /\ M e. RR+ ) -> A e. RR ) |
|
| 6 | rpre | |- ( M e. RR+ -> M e. RR ) |
|
| 7 | 6 | adantl | |- ( ( A e. RR /\ M e. RR+ ) -> M e. RR ) |
| 8 | simpr | |- ( ( A e. RR /\ M e. RR+ ) -> M e. RR+ ) |
|
| 9 | modsubdir | |- ( ( A e. RR /\ M e. RR /\ M e. RR+ ) -> ( ( M mod M ) <_ ( A mod M ) <-> ( ( A - M ) mod M ) = ( ( A mod M ) - ( M mod M ) ) ) ) |
|
| 10 | 5 7 8 9 | syl3anc | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( M mod M ) <_ ( A mod M ) <-> ( ( A - M ) mod M ) = ( ( A mod M ) - ( M mod M ) ) ) ) |
| 11 | 4 10 | mpbid | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( A - M ) mod M ) = ( ( A mod M ) - ( M mod M ) ) ) |
| 12 | 2 | eqcomd | |- ( ( A e. RR /\ M e. RR+ ) -> 0 = ( M mod M ) ) |
| 13 | 12 | oveq2d | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) - 0 ) = ( ( A mod M ) - ( M mod M ) ) ) |
| 14 | modcl | |- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) |
|
| 15 | 14 | recnd | |- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. CC ) |
| 16 | 15 | subid1d | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) - 0 ) = ( A mod M ) ) |
| 17 | 11 13 16 | 3eqtr2rd | |- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) = ( ( A - M ) mod M ) ) |