This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation property of the modulo operation. (Contributed by Mario Carneiro, 9-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modnegd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| modnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| modnegd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| modnegd.4 | ⊢ ( 𝜑 → ( 𝐴 mod 𝐶 ) = ( 𝐵 mod 𝐶 ) ) | ||
| Assertion | modnegd | ⊢ ( 𝜑 → ( - 𝐴 mod 𝐶 ) = ( - 𝐵 mod 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modnegd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | modnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | modnegd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 4 | modnegd.4 | ⊢ ( 𝜑 → ( 𝐴 mod 𝐶 ) = ( 𝐵 mod 𝐶 ) ) | |
| 5 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 6 | 5 | znegcld | ⊢ ( 𝜑 → - 1 ∈ ℤ ) |
| 7 | modmul1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( - 1 ∈ ℤ ∧ 𝐶 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐶 ) = ( 𝐵 mod 𝐶 ) ) → ( ( 𝐴 · - 1 ) mod 𝐶 ) = ( ( 𝐵 · - 1 ) mod 𝐶 ) ) | |
| 8 | 1 2 6 3 4 7 | syl221anc | ⊢ ( 𝜑 → ( ( 𝐴 · - 1 ) mod 𝐶 ) = ( ( 𝐵 · - 1 ) mod 𝐶 ) ) |
| 9 | 1 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 10 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 11 | 10 | negcld | ⊢ ( 𝜑 → - 1 ∈ ℂ ) |
| 12 | 9 11 | mulcomd | ⊢ ( 𝜑 → ( 𝐴 · - 1 ) = ( - 1 · 𝐴 ) ) |
| 13 | 9 | mulm1d | ⊢ ( 𝜑 → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 14 | 12 13 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 · - 1 ) = - 𝐴 ) |
| 15 | 14 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 · - 1 ) mod 𝐶 ) = ( - 𝐴 mod 𝐶 ) ) |
| 16 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 17 | 16 11 | mulcomd | ⊢ ( 𝜑 → ( 𝐵 · - 1 ) = ( - 1 · 𝐵 ) ) |
| 18 | 16 | mulm1d | ⊢ ( 𝜑 → ( - 1 · 𝐵 ) = - 𝐵 ) |
| 19 | 17 18 | eqtrd | ⊢ ( 𝜑 → ( 𝐵 · - 1 ) = - 𝐵 ) |
| 20 | 19 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐵 · - 1 ) mod 𝐶 ) = ( - 𝐵 mod 𝐶 ) ) |
| 21 | 8 15 20 | 3eqtr3d | ⊢ ( 𝜑 → ( - 𝐴 mod 𝐶 ) = ( - 𝐵 mod 𝐶 ) ) |