This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Partition of a division into its integer part and the remainder. (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flpmodeq | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modvalr | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( ( |_ ` ( A / B ) ) x. B ) ) ) |
|
| 2 | 1 | eqcomd | |- ( ( A e. RR /\ B e. RR+ ) -> ( A - ( ( |_ ` ( A / B ) ) x. B ) ) = ( A mod B ) ) |
| 3 | recn | |- ( A e. RR -> A e. CC ) |
|
| 4 | 3 | adantr | |- ( ( A e. RR /\ B e. RR+ ) -> A e. CC ) |
| 5 | rerpdivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
|
| 6 | flcl | |- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. ZZ ) |
|
| 7 | 6 | zcnd | |- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. CC ) |
| 8 | 5 7 | syl | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
| 9 | rpcn | |- ( B e. RR+ -> B e. CC ) |
|
| 10 | 9 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
| 11 | 8 10 | mulcld | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( |_ ` ( A / B ) ) x. B ) e. CC ) |
| 12 | modcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. RR ) |
|
| 13 | 12 | recnd | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) e. CC ) |
| 14 | 4 11 13 | subaddd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( ( |_ ` ( A / B ) ) x. B ) ) = ( A mod B ) <-> ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) = A ) ) |
| 15 | 2 14 | mpbid | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( |_ ` ( A / B ) ) x. B ) + ( A mod B ) ) = A ) |