This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication property of the modulo operation, see theorem 5.2(b) in ApostolNT p. 107. (Contributed by Mario Carneiro, 5-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | modmul12d.1 | |- ( ph -> A e. ZZ ) |
|
| modmul12d.2 | |- ( ph -> B e. ZZ ) |
||
| modmul12d.3 | |- ( ph -> C e. ZZ ) |
||
| modmul12d.4 | |- ( ph -> D e. ZZ ) |
||
| modmul12d.5 | |- ( ph -> E e. RR+ ) |
||
| modmul12d.6 | |- ( ph -> ( A mod E ) = ( B mod E ) ) |
||
| modmul12d.7 | |- ( ph -> ( C mod E ) = ( D mod E ) ) |
||
| Assertion | modmul12d | |- ( ph -> ( ( A x. C ) mod E ) = ( ( B x. D ) mod E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modmul12d.1 | |- ( ph -> A e. ZZ ) |
|
| 2 | modmul12d.2 | |- ( ph -> B e. ZZ ) |
|
| 3 | modmul12d.3 | |- ( ph -> C e. ZZ ) |
|
| 4 | modmul12d.4 | |- ( ph -> D e. ZZ ) |
|
| 5 | modmul12d.5 | |- ( ph -> E e. RR+ ) |
|
| 6 | modmul12d.6 | |- ( ph -> ( A mod E ) = ( B mod E ) ) |
|
| 7 | modmul12d.7 | |- ( ph -> ( C mod E ) = ( D mod E ) ) |
|
| 8 | 1 | zred | |- ( ph -> A e. RR ) |
| 9 | 2 | zred | |- ( ph -> B e. RR ) |
| 10 | modmul1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ E e. RR+ ) /\ ( A mod E ) = ( B mod E ) ) -> ( ( A x. C ) mod E ) = ( ( B x. C ) mod E ) ) |
|
| 11 | 8 9 3 5 6 10 | syl221anc | |- ( ph -> ( ( A x. C ) mod E ) = ( ( B x. C ) mod E ) ) |
| 12 | 2 | zcnd | |- ( ph -> B e. CC ) |
| 13 | 3 | zcnd | |- ( ph -> C e. CC ) |
| 14 | 12 13 | mulcomd | |- ( ph -> ( B x. C ) = ( C x. B ) ) |
| 15 | 14 | oveq1d | |- ( ph -> ( ( B x. C ) mod E ) = ( ( C x. B ) mod E ) ) |
| 16 | 3 | zred | |- ( ph -> C e. RR ) |
| 17 | 4 | zred | |- ( ph -> D e. RR ) |
| 18 | modmul1 | |- ( ( ( C e. RR /\ D e. RR ) /\ ( B e. ZZ /\ E e. RR+ ) /\ ( C mod E ) = ( D mod E ) ) -> ( ( C x. B ) mod E ) = ( ( D x. B ) mod E ) ) |
|
| 19 | 16 17 2 5 7 18 | syl221anc | |- ( ph -> ( ( C x. B ) mod E ) = ( ( D x. B ) mod E ) ) |
| 20 | 4 | zcnd | |- ( ph -> D e. CC ) |
| 21 | 20 12 | mulcomd | |- ( ph -> ( D x. B ) = ( B x. D ) ) |
| 22 | 21 | oveq1d | |- ( ph -> ( ( D x. B ) mod E ) = ( ( B x. D ) mod E ) ) |
| 23 | 15 19 22 | 3eqtrd | |- ( ph -> ( ( B x. C ) mod E ) = ( ( B x. D ) mod E ) ) |
| 24 | 11 23 | eqtrd | |- ( ph -> ( ( A x. C ) mod E ) = ( ( B x. D ) mod E ) ) |