This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number modulo an irrational multiple of it is nonzero. (Contributed by NM, 11-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modirr | |- ( ( A e. RR /\ B e. RR+ /\ ( A / B ) e. ( RR \ QQ ) ) -> ( A mod B ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | |- ( ( A / B ) e. ( RR \ QQ ) <-> ( ( A / B ) e. RR /\ -. ( A / B ) e. QQ ) ) |
|
| 2 | modval | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
|
| 3 | 2 | eqeq1d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( A - ( B x. ( |_ ` ( A / B ) ) ) ) = 0 ) ) |
| 4 | recn | |- ( A e. RR -> A e. CC ) |
|
| 5 | 4 | adantr | |- ( ( A e. RR /\ B e. RR+ ) -> A e. CC ) |
| 6 | rpre | |- ( B e. RR+ -> B e. RR ) |
|
| 7 | 6 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. RR ) |
| 8 | refldivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. RR ) |
|
| 9 | 7 8 | remulcld | |- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. RR ) |
| 10 | 9 | recnd | |- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. CC ) |
| 11 | 5 10 | subeq0ad | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( B x. ( |_ ` ( A / B ) ) ) ) = 0 <-> A = ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 12 | rerpdivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
|
| 13 | reflcl | |- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. RR ) |
|
| 14 | 13 | recnd | |- ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. CC ) |
| 15 | 12 14 | syl | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
| 16 | rpcnne0 | |- ( B e. RR+ -> ( B e. CC /\ B =/= 0 ) ) |
|
| 17 | 16 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> ( B e. CC /\ B =/= 0 ) ) |
| 18 | divmul2 | |- ( ( A e. CC /\ ( |_ ` ( A / B ) ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = ( |_ ` ( A / B ) ) <-> A = ( B x. ( |_ ` ( A / B ) ) ) ) ) |
|
| 19 | 5 15 17 18 | syl3anc | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) = ( |_ ` ( A / B ) ) <-> A = ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 20 | eqcom | |- ( ( A / B ) = ( |_ ` ( A / B ) ) <-> ( |_ ` ( A / B ) ) = ( A / B ) ) |
|
| 21 | 19 20 | bitr3di | |- ( ( A e. RR /\ B e. RR+ ) -> ( A = ( B x. ( |_ ` ( A / B ) ) ) <-> ( |_ ` ( A / B ) ) = ( A / B ) ) ) |
| 22 | 3 11 21 | 3bitrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( |_ ` ( A / B ) ) = ( A / B ) ) ) |
| 23 | flidz | |- ( ( A / B ) e. RR -> ( ( |_ ` ( A / B ) ) = ( A / B ) <-> ( A / B ) e. ZZ ) ) |
|
| 24 | zq | |- ( ( A / B ) e. ZZ -> ( A / B ) e. QQ ) |
|
| 25 | 23 24 | biimtrdi | |- ( ( A / B ) e. RR -> ( ( |_ ` ( A / B ) ) = ( A / B ) -> ( A / B ) e. QQ ) ) |
| 26 | 12 25 | syl | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( |_ ` ( A / B ) ) = ( A / B ) -> ( A / B ) e. QQ ) ) |
| 27 | 22 26 | sylbid | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 -> ( A / B ) e. QQ ) ) |
| 28 | 27 | necon3bd | |- ( ( A e. RR /\ B e. RR+ ) -> ( -. ( A / B ) e. QQ -> ( A mod B ) =/= 0 ) ) |
| 29 | 28 | adantld | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( A / B ) e. RR /\ -. ( A / B ) e. QQ ) -> ( A mod B ) =/= 0 ) ) |
| 30 | 1 29 | biimtrid | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) e. ( RR \ QQ ) -> ( A mod B ) =/= 0 ) ) |
| 31 | 30 | 3impia | |- ( ( A e. RR /\ B e. RR+ /\ ( A / B ) e. ( RR \ QQ ) ) -> ( A mod B ) =/= 0 ) |