This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modm1div | |- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> ( ( A mod N ) = 1 <-> N || ( A - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre | |- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
|
| 2 | eluz2gt1 | |- ( N e. ( ZZ>= ` 2 ) -> 1 < N ) |
|
| 3 | 2 | adantr | |- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> 1 < N ) |
| 4 | 1mod | |- ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) |
|
| 5 | 4 | eqcomd | |- ( ( N e. RR /\ 1 < N ) -> 1 = ( 1 mod N ) ) |
| 6 | 1 3 5 | syl2an2r | |- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> 1 = ( 1 mod N ) ) |
| 7 | 6 | eqeq2d | |- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> ( ( A mod N ) = 1 <-> ( A mod N ) = ( 1 mod N ) ) ) |
| 8 | eluz2nn | |- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
|
| 9 | 8 | adantr | |- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> N e. NN ) |
| 10 | simpr | |- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> A e. ZZ ) |
|
| 11 | 1zzd | |- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> 1 e. ZZ ) |
|
| 12 | moddvds | |- ( ( N e. NN /\ A e. ZZ /\ 1 e. ZZ ) -> ( ( A mod N ) = ( 1 mod N ) <-> N || ( A - 1 ) ) ) |
|
| 13 | 9 10 11 12 | syl3anc | |- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> ( ( A mod N ) = ( 1 mod N ) <-> N || ( A - 1 ) ) ) |
| 14 | 7 13 | bitrd | |- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> ( ( A mod N ) = 1 <-> N || ( A - 1 ) ) ) |