This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition property of the modulo operation. Biconditional version of modadd1 by applying modadd1 twice. (Contributed by AV, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modaddb | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modadd1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) |
|
| 2 | 1 | 3expa | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) |
| 3 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> A e. RR ) |
|
| 4 | simprl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> C e. RR ) |
|
| 5 | 3 4 | readdcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( A + C ) e. RR ) |
| 6 | simplr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> B e. RR ) |
|
| 7 | 6 4 | readdcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( B + C ) e. RR ) |
| 8 | 5 7 | jca | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A + C ) e. RR /\ ( B + C ) e. RR ) ) |
| 9 | 8 | adantr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( ( A + C ) e. RR /\ ( B + C ) e. RR ) ) |
| 10 | renegcl | |- ( C e. RR -> -u C e. RR ) |
|
| 11 | 10 | anim1i | |- ( ( C e. RR /\ D e. RR+ ) -> ( -u C e. RR /\ D e. RR+ ) ) |
| 12 | 11 | adantl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( -u C e. RR /\ D e. RR+ ) ) |
| 13 | 12 | adantr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( -u C e. RR /\ D e. RR+ ) ) |
| 14 | simpr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) |
|
| 15 | modadd1 | |- ( ( ( ( A + C ) e. RR /\ ( B + C ) e. RR ) /\ ( -u C e. RR /\ D e. RR+ ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( ( ( A + C ) + -u C ) mod D ) = ( ( ( B + C ) + -u C ) mod D ) ) |
|
| 16 | 9 13 14 15 | syl3anc | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( ( ( A + C ) + -u C ) mod D ) = ( ( ( B + C ) + -u C ) mod D ) ) |
| 17 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
| 18 | 17 | recnd | |- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
| 19 | 18 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> A e. CC ) |
| 20 | simpl | |- ( ( C e. RR /\ D e. RR+ ) -> C e. RR ) |
|
| 21 | 20 | recnd | |- ( ( C e. RR /\ D e. RR+ ) -> C e. CC ) |
| 22 | 21 | adantl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> C e. CC ) |
| 23 | 19 22 | addcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( A + C ) e. CC ) |
| 24 | 23 22 | negsubd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A + C ) + -u C ) = ( ( A + C ) - C ) ) |
| 25 | 19 22 | pncand | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A + C ) - C ) = A ) |
| 26 | 24 25 | eqtr2d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> A = ( ( A + C ) + -u C ) ) |
| 27 | 26 | oveq1d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( A mod D ) = ( ( ( A + C ) + -u C ) mod D ) ) |
| 28 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
| 29 | 28 | recnd | |- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 30 | 29 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> B e. CC ) |
| 31 | 30 22 | addcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( B + C ) e. CC ) |
| 32 | 31 22 | negsubd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( B + C ) + -u C ) = ( ( B + C ) - C ) ) |
| 33 | 30 22 | pncand | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( B + C ) - C ) = B ) |
| 34 | 32 33 | eqtr2d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> B = ( ( B + C ) + -u C ) ) |
| 35 | 34 | oveq1d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( B mod D ) = ( ( ( B + C ) + -u C ) mod D ) ) |
| 36 | 27 35 | eqeq12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( ( ( A + C ) + -u C ) mod D ) = ( ( ( B + C ) + -u C ) mod D ) ) ) |
| 37 | 36 | adantr | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( ( ( A + C ) + -u C ) mod D ) = ( ( ( B + C ) + -u C ) mod D ) ) ) |
| 38 | 16 37 | mpbird | |- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) /\ ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) -> ( A mod D ) = ( B mod D ) ) |
| 39 | 2 38 | impbida | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( ( A + C ) mod D ) = ( ( B + C ) mod D ) ) ) |