This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sums of two nonnegative integers less than the modulus and an integer are equal iff the two nonnegative integers are equal. (Contributed by AV, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | modaddid.i | |- I = ( 0 ..^ N ) |
|
| Assertion | modaddid | |- ( ( N e. ( ZZ>= ` 3 ) /\ ( X e. I /\ Y e. I ) /\ K e. ZZ ) -> ( ( ( X + K ) mod N ) = ( ( Y + K ) mod N ) <-> X = Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modaddid.i | |- I = ( 0 ..^ N ) |
|
| 2 | elfzoelz | |- ( X e. ( 0 ..^ N ) -> X e. ZZ ) |
|
| 3 | 2 | zred | |- ( X e. ( 0 ..^ N ) -> X e. RR ) |
| 4 | 3 1 | eleq2s | |- ( X e. I -> X e. RR ) |
| 5 | elfzoelz | |- ( Y e. ( 0 ..^ N ) -> Y e. ZZ ) |
|
| 6 | 5 | zred | |- ( Y e. ( 0 ..^ N ) -> Y e. RR ) |
| 7 | 6 1 | eleq2s | |- ( Y e. I -> Y e. RR ) |
| 8 | 4 7 | anim12i | |- ( ( X e. I /\ Y e. I ) -> ( X e. RR /\ Y e. RR ) ) |
| 9 | 8 | 3ad2ant2 | |- ( ( N e. ( ZZ>= ` 3 ) /\ ( X e. I /\ Y e. I ) /\ K e. ZZ ) -> ( X e. RR /\ Y e. RR ) ) |
| 10 | eluz3nn | |- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
|
| 11 | 10 | nnrpd | |- ( N e. ( ZZ>= ` 3 ) -> N e. RR+ ) |
| 12 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 13 | 11 12 | anim12ci | |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. ZZ ) -> ( K e. RR /\ N e. RR+ ) ) |
| 14 | modaddb | |- ( ( ( X e. RR /\ Y e. RR ) /\ ( K e. RR /\ N e. RR+ ) ) -> ( ( X mod N ) = ( Y mod N ) <-> ( ( X + K ) mod N ) = ( ( Y + K ) mod N ) ) ) |
|
| 15 | 9 13 14 | 3imp3i2an | |- ( ( N e. ( ZZ>= ` 3 ) /\ ( X e. I /\ Y e. I ) /\ K e. ZZ ) -> ( ( X mod N ) = ( Y mod N ) <-> ( ( X + K ) mod N ) = ( ( Y + K ) mod N ) ) ) |
| 16 | zmodidfzoimp | |- ( X e. ( 0 ..^ N ) -> ( X mod N ) = X ) |
|
| 17 | 16 1 | eleq2s | |- ( X e. I -> ( X mod N ) = X ) |
| 18 | zmodidfzoimp | |- ( Y e. ( 0 ..^ N ) -> ( Y mod N ) = Y ) |
|
| 19 | 18 1 | eleq2s | |- ( Y e. I -> ( Y mod N ) = Y ) |
| 20 | 17 19 | eqeqan12d | |- ( ( X e. I /\ Y e. I ) -> ( ( X mod N ) = ( Y mod N ) <-> X = Y ) ) |
| 21 | 20 | 3ad2ant2 | |- ( ( N e. ( ZZ>= ` 3 ) /\ ( X e. I /\ Y e. I ) /\ K e. ZZ ) -> ( ( X mod N ) = ( Y mod N ) <-> X = Y ) ) |
| 22 | 15 21 | bitr3d | |- ( ( N e. ( ZZ>= ` 3 ) /\ ( X e. I /\ Y e. I ) /\ K e. ZZ ) -> ( ( ( X + K ) mod N ) = ( ( Y + K ) mod N ) <-> X = Y ) ) |