This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition property of the modulo operation. Biconditional version of modadd1 by applying modadd1 twice. (Contributed by AV, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modaddb | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ↔ ( ( 𝐴 + 𝐶 ) mod 𝐷 ) = ( ( 𝐵 + 𝐶 ) mod 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modadd1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 + 𝐶 ) mod 𝐷 ) = ( ( 𝐵 + 𝐶 ) mod 𝐷 ) ) | |
| 2 | 1 | 3expa | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 + 𝐶 ) mod 𝐷 ) = ( ( 𝐵 + 𝐶 ) mod 𝐷 ) ) |
| 3 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → 𝐴 ∈ ℝ ) | |
| 4 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → 𝐶 ∈ ℝ ) | |
| 5 | 3 4 | readdcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( 𝐴 + 𝐶 ) ∈ ℝ ) |
| 6 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → 𝐵 ∈ ℝ ) | |
| 7 | 6 4 | readdcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 8 | 5 7 | jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( ( 𝐴 + 𝐶 ) ∈ ℝ ∧ ( 𝐵 + 𝐶 ) ∈ ℝ ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) ∧ ( ( 𝐴 + 𝐶 ) mod 𝐷 ) = ( ( 𝐵 + 𝐶 ) mod 𝐷 ) ) → ( ( 𝐴 + 𝐶 ) ∈ ℝ ∧ ( 𝐵 + 𝐶 ) ∈ ℝ ) ) |
| 10 | renegcl | ⊢ ( 𝐶 ∈ ℝ → - 𝐶 ∈ ℝ ) | |
| 11 | 10 | anim1i | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) → ( - 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( - 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) ∧ ( ( 𝐴 + 𝐶 ) mod 𝐷 ) = ( ( 𝐵 + 𝐶 ) mod 𝐷 ) ) → ( - 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) |
| 14 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) ∧ ( ( 𝐴 + 𝐶 ) mod 𝐷 ) = ( ( 𝐵 + 𝐶 ) mod 𝐷 ) ) → ( ( 𝐴 + 𝐶 ) mod 𝐷 ) = ( ( 𝐵 + 𝐶 ) mod 𝐷 ) ) | |
| 15 | modadd1 | ⊢ ( ( ( ( 𝐴 + 𝐶 ) ∈ ℝ ∧ ( 𝐵 + 𝐶 ) ∈ ℝ ) ∧ ( - 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ∧ ( ( 𝐴 + 𝐶 ) mod 𝐷 ) = ( ( 𝐵 + 𝐶 ) mod 𝐷 ) ) → ( ( ( 𝐴 + 𝐶 ) + - 𝐶 ) mod 𝐷 ) = ( ( ( 𝐵 + 𝐶 ) + - 𝐶 ) mod 𝐷 ) ) | |
| 16 | 9 13 14 15 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) ∧ ( ( 𝐴 + 𝐶 ) mod 𝐷 ) = ( ( 𝐵 + 𝐶 ) mod 𝐷 ) ) → ( ( ( 𝐴 + 𝐶 ) + - 𝐶 ) mod 𝐷 ) = ( ( ( 𝐵 + 𝐶 ) + - 𝐶 ) mod 𝐷 ) ) |
| 17 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 18 | 17 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → 𝐴 ∈ ℂ ) |
| 20 | simpl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) | |
| 21 | 20 | recnd | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) → 𝐶 ∈ ℂ ) |
| 22 | 21 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → 𝐶 ∈ ℂ ) |
| 23 | 19 22 | addcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( 𝐴 + 𝐶 ) ∈ ℂ ) |
| 24 | 23 22 | negsubd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( ( 𝐴 + 𝐶 ) + - 𝐶 ) = ( ( 𝐴 + 𝐶 ) − 𝐶 ) ) |
| 25 | 19 22 | pncand | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( ( 𝐴 + 𝐶 ) − 𝐶 ) = 𝐴 ) |
| 26 | 24 25 | eqtr2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → 𝐴 = ( ( 𝐴 + 𝐶 ) + - 𝐶 ) ) |
| 27 | 26 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( 𝐴 mod 𝐷 ) = ( ( ( 𝐴 + 𝐶 ) + - 𝐶 ) mod 𝐷 ) ) |
| 28 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 29 | 28 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → 𝐵 ∈ ℂ ) |
| 31 | 30 22 | addcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) |
| 32 | 31 22 | negsubd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( ( 𝐵 + 𝐶 ) + - 𝐶 ) = ( ( 𝐵 + 𝐶 ) − 𝐶 ) ) |
| 33 | 30 22 | pncand | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( ( 𝐵 + 𝐶 ) − 𝐶 ) = 𝐵 ) |
| 34 | 32 33 | eqtr2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → 𝐵 = ( ( 𝐵 + 𝐶 ) + - 𝐶 ) ) |
| 35 | 34 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( 𝐵 mod 𝐷 ) = ( ( ( 𝐵 + 𝐶 ) + - 𝐶 ) mod 𝐷 ) ) |
| 36 | 27 35 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ↔ ( ( ( 𝐴 + 𝐶 ) + - 𝐶 ) mod 𝐷 ) = ( ( ( 𝐵 + 𝐶 ) + - 𝐶 ) mod 𝐷 ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) ∧ ( ( 𝐴 + 𝐶 ) mod 𝐷 ) = ( ( 𝐵 + 𝐶 ) mod 𝐷 ) ) → ( ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ↔ ( ( ( 𝐴 + 𝐶 ) + - 𝐶 ) mod 𝐷 ) = ( ( ( 𝐵 + 𝐶 ) + - 𝐶 ) mod 𝐷 ) ) ) |
| 38 | 16 37 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) ∧ ( ( 𝐴 + 𝐶 ) mod 𝐷 ) = ( ( 𝐵 + 𝐶 ) mod 𝐷 ) ) → ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) |
| 39 | 2 38 | impbida | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ+ ) ) → ( ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ↔ ( ( 𝐴 + 𝐶 ) mod 𝐷 ) = ( ( 𝐵 + 𝐶 ) mod 𝐷 ) ) ) |