This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of meet of elements in the domain. (Contributed by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetcl.b | |- B = ( Base ` K ) |
|
| meetcl.m | |- ./\ = ( meet ` K ) |
||
| meetcl.k | |- ( ph -> K e. V ) |
||
| meetcl.x | |- ( ph -> X e. B ) |
||
| meetcl.y | |- ( ph -> Y e. B ) |
||
| meetcl.e | |- ( ph -> <. X , Y >. e. dom ./\ ) |
||
| Assertion | meetcl | |- ( ph -> ( X ./\ Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetcl.b | |- B = ( Base ` K ) |
|
| 2 | meetcl.m | |- ./\ = ( meet ` K ) |
|
| 3 | meetcl.k | |- ( ph -> K e. V ) |
|
| 4 | meetcl.x | |- ( ph -> X e. B ) |
|
| 5 | meetcl.y | |- ( ph -> Y e. B ) |
|
| 6 | meetcl.e | |- ( ph -> <. X , Y >. e. dom ./\ ) |
|
| 7 | eqid | |- ( glb ` K ) = ( glb ` K ) |
|
| 8 | 7 2 3 4 5 | meetval | |- ( ph -> ( X ./\ Y ) = ( ( glb ` K ) ` { X , Y } ) ) |
| 9 | 7 2 3 4 5 | meetdef | |- ( ph -> ( <. X , Y >. e. dom ./\ <-> { X , Y } e. dom ( glb ` K ) ) ) |
| 10 | 6 9 | mpbid | |- ( ph -> { X , Y } e. dom ( glb ` K ) ) |
| 11 | 1 7 3 10 | glbcl | |- ( ph -> ( ( glb ` K ) ` { X , Y } ) e. B ) |
| 12 | 8 11 | eqeltrd | |- ( ph -> ( X ./\ Y ) e. B ) |