This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset property of domain of meet. (Contributed by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetdmss.b | |- B = ( Base ` K ) |
|
| meetdmss.j | |- ./\ = ( meet ` K ) |
||
| meetdmss.k | |- ( ph -> K e. V ) |
||
| Assertion | meetdmss | |- ( ph -> dom ./\ C_ ( B X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetdmss.b | |- B = ( Base ` K ) |
|
| 2 | meetdmss.j | |- ./\ = ( meet ` K ) |
|
| 3 | meetdmss.k | |- ( ph -> K e. V ) |
|
| 4 | relopabv | |- Rel { <. x , y >. | { x , y } e. dom ( glb ` K ) } |
|
| 5 | eqid | |- ( glb ` K ) = ( glb ` K ) |
|
| 6 | 5 2 | meetdm | |- ( K e. V -> dom ./\ = { <. x , y >. | { x , y } e. dom ( glb ` K ) } ) |
| 7 | 3 6 | syl | |- ( ph -> dom ./\ = { <. x , y >. | { x , y } e. dom ( glb ` K ) } ) |
| 8 | 7 | releqd | |- ( ph -> ( Rel dom ./\ <-> Rel { <. x , y >. | { x , y } e. dom ( glb ` K ) } ) ) |
| 9 | 4 8 | mpbiri | |- ( ph -> Rel dom ./\ ) |
| 10 | vex | |- x e. _V |
|
| 11 | 10 | a1i | |- ( ph -> x e. _V ) |
| 12 | vex | |- y e. _V |
|
| 13 | 12 | a1i | |- ( ph -> y e. _V ) |
| 14 | 5 2 3 11 13 | meetdef | |- ( ph -> ( <. x , y >. e. dom ./\ <-> { x , y } e. dom ( glb ` K ) ) ) |
| 15 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 16 | 3 | adantr | |- ( ( ph /\ { x , y } e. dom ( glb ` K ) ) -> K e. V ) |
| 17 | simpr | |- ( ( ph /\ { x , y } e. dom ( glb ` K ) ) -> { x , y } e. dom ( glb ` K ) ) |
|
| 18 | 1 15 5 16 17 | glbelss | |- ( ( ph /\ { x , y } e. dom ( glb ` K ) ) -> { x , y } C_ B ) |
| 19 | 18 | ex | |- ( ph -> ( { x , y } e. dom ( glb ` K ) -> { x , y } C_ B ) ) |
| 20 | 10 12 | prss | |- ( ( x e. B /\ y e. B ) <-> { x , y } C_ B ) |
| 21 | opelxpi | |- ( ( x e. B /\ y e. B ) -> <. x , y >. e. ( B X. B ) ) |
|
| 22 | 20 21 | sylbir | |- ( { x , y } C_ B -> <. x , y >. e. ( B X. B ) ) |
| 23 | 19 22 | syl6 | |- ( ph -> ( { x , y } e. dom ( glb ` K ) -> <. x , y >. e. ( B X. B ) ) ) |
| 24 | 14 23 | sylbid | |- ( ph -> ( <. x , y >. e. dom ./\ -> <. x , y >. e. ( B X. B ) ) ) |
| 25 | 9 24 | relssdv | |- ( ph -> dom ./\ C_ ( B X. B ) ) |