This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetdef.u | |- G = ( glb ` K ) |
|
| meetdef.m | |- ./\ = ( meet ` K ) |
||
| meetdef.k | |- ( ph -> K e. V ) |
||
| meetdef.x | |- ( ph -> X e. W ) |
||
| meetdef.y | |- ( ph -> Y e. Z ) |
||
| Assertion | meetdef | |- ( ph -> ( <. X , Y >. e. dom ./\ <-> { X , Y } e. dom G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetdef.u | |- G = ( glb ` K ) |
|
| 2 | meetdef.m | |- ./\ = ( meet ` K ) |
|
| 3 | meetdef.k | |- ( ph -> K e. V ) |
|
| 4 | meetdef.x | |- ( ph -> X e. W ) |
|
| 5 | meetdef.y | |- ( ph -> Y e. Z ) |
|
| 6 | 1 2 | meetdm | |- ( K e. V -> dom ./\ = { <. x , y >. | { x , y } e. dom G } ) |
| 7 | 6 | eleq2d | |- ( K e. V -> ( <. X , Y >. e. dom ./\ <-> <. X , Y >. e. { <. x , y >. | { x , y } e. dom G } ) ) |
| 8 | 3 7 | syl | |- ( ph -> ( <. X , Y >. e. dom ./\ <-> <. X , Y >. e. { <. x , y >. | { x , y } e. dom G } ) ) |
| 9 | preq1 | |- ( x = X -> { x , y } = { X , y } ) |
|
| 10 | 9 | eleq1d | |- ( x = X -> ( { x , y } e. dom G <-> { X , y } e. dom G ) ) |
| 11 | preq2 | |- ( y = Y -> { X , y } = { X , Y } ) |
|
| 12 | 11 | eleq1d | |- ( y = Y -> ( { X , y } e. dom G <-> { X , Y } e. dom G ) ) |
| 13 | 10 12 | opelopabg | |- ( ( X e. W /\ Y e. Z ) -> ( <. X , Y >. e. { <. x , y >. | { x , y } e. dom G } <-> { X , Y } e. dom G ) ) |
| 14 | 4 5 13 | syl2anc | |- ( ph -> ( <. X , Y >. e. { <. x , y >. | { x , y } e. dom G } <-> { X , Y } e. dom G ) ) |
| 15 | 8 14 | bitrd | |- ( ph -> ( <. X , Y >. e. dom ./\ <-> { X , Y } e. dom G ) ) |