This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpodx.1 | |- ( ph -> F = ( x e. C , y e. D |-> R ) ) |
|
| ovmpodx.2 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R = S ) |
||
| ovmpodx.3 | |- ( ( ph /\ x = A ) -> D = L ) |
||
| ovmpodx.4 | |- ( ph -> A e. C ) |
||
| ovmpodx.5 | |- ( ph -> B e. L ) |
||
| ovmpodx.6 | |- ( ph -> S e. X ) |
||
| ovmpodxf.px | |- F/ x ph |
||
| ovmpodxf.py | |- F/ y ph |
||
| ovmpodxf.ay | |- F/_ y A |
||
| ovmpodxf.bx | |- F/_ x B |
||
| ovmpodxf.sx | |- F/_ x S |
||
| ovmpodxf.sy | |- F/_ y S |
||
| Assertion | ovmpodxf | |- ( ph -> ( A F B ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpodx.1 | |- ( ph -> F = ( x e. C , y e. D |-> R ) ) |
|
| 2 | ovmpodx.2 | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R = S ) |
|
| 3 | ovmpodx.3 | |- ( ( ph /\ x = A ) -> D = L ) |
|
| 4 | ovmpodx.4 | |- ( ph -> A e. C ) |
|
| 5 | ovmpodx.5 | |- ( ph -> B e. L ) |
|
| 6 | ovmpodx.6 | |- ( ph -> S e. X ) |
|
| 7 | ovmpodxf.px | |- F/ x ph |
|
| 8 | ovmpodxf.py | |- F/ y ph |
|
| 9 | ovmpodxf.ay | |- F/_ y A |
|
| 10 | ovmpodxf.bx | |- F/_ x B |
|
| 11 | ovmpodxf.sx | |- F/_ x S |
|
| 12 | ovmpodxf.sy | |- F/_ y S |
|
| 13 | 1 | oveqd | |- ( ph -> ( A F B ) = ( A ( x e. C , y e. D |-> R ) B ) ) |
| 14 | eqid | |- ( x e. C , y e. D |-> R ) = ( x e. C , y e. D |-> R ) |
|
| 15 | 14 | ovmpt4g | |- ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) |
| 16 | 15 | a1i | |- ( ph -> ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) |
| 17 | 8 16 | alrimi | |- ( ph -> A. y ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) |
| 18 | 5 17 | spsbcd | |- ( ph -> [. B / y ]. ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) |
| 19 | 7 18 | alrimi | |- ( ph -> A. x [. B / y ]. ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) |
| 20 | 4 19 | spsbcd | |- ( ph -> [. A / x ]. [. B / y ]. ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) |
| 21 | 5 | adantr | |- ( ( ph /\ x = A ) -> B e. L ) |
| 22 | simplr | |- ( ( ( ph /\ x = A ) /\ y = B ) -> x = A ) |
|
| 23 | 4 | ad2antrr | |- ( ( ( ph /\ x = A ) /\ y = B ) -> A e. C ) |
| 24 | 22 23 | eqeltrd | |- ( ( ( ph /\ x = A ) /\ y = B ) -> x e. C ) |
| 25 | 5 | ad2antrr | |- ( ( ( ph /\ x = A ) /\ y = B ) -> B e. L ) |
| 26 | simpr | |- ( ( ( ph /\ x = A ) /\ y = B ) -> y = B ) |
|
| 27 | 3 | adantr | |- ( ( ( ph /\ x = A ) /\ y = B ) -> D = L ) |
| 28 | 25 26 27 | 3eltr4d | |- ( ( ( ph /\ x = A ) /\ y = B ) -> y e. D ) |
| 29 | 2 | anassrs | |- ( ( ( ph /\ x = A ) /\ y = B ) -> R = S ) |
| 30 | 6 | elexd | |- ( ph -> S e. _V ) |
| 31 | 30 | ad2antrr | |- ( ( ( ph /\ x = A ) /\ y = B ) -> S e. _V ) |
| 32 | 29 31 | eqeltrd | |- ( ( ( ph /\ x = A ) /\ y = B ) -> R e. _V ) |
| 33 | biimt | |- ( ( x e. C /\ y e. D /\ R e. _V ) -> ( ( x ( x e. C , y e. D |-> R ) y ) = R <-> ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) ) |
|
| 34 | 24 28 32 33 | syl3anc | |- ( ( ( ph /\ x = A ) /\ y = B ) -> ( ( x ( x e. C , y e. D |-> R ) y ) = R <-> ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) ) ) |
| 35 | 22 26 | oveq12d | |- ( ( ( ph /\ x = A ) /\ y = B ) -> ( x ( x e. C , y e. D |-> R ) y ) = ( A ( x e. C , y e. D |-> R ) B ) ) |
| 36 | 35 29 | eqeq12d | |- ( ( ( ph /\ x = A ) /\ y = B ) -> ( ( x ( x e. C , y e. D |-> R ) y ) = R <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
| 37 | 34 36 | bitr3d | |- ( ( ( ph /\ x = A ) /\ y = B ) -> ( ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
| 38 | 9 | nfeq2 | |- F/ y x = A |
| 39 | 8 38 | nfan | |- F/ y ( ph /\ x = A ) |
| 40 | nfmpo2 | |- F/_ y ( x e. C , y e. D |-> R ) |
|
| 41 | nfcv | |- F/_ y B |
|
| 42 | 9 40 41 | nfov | |- F/_ y ( A ( x e. C , y e. D |-> R ) B ) |
| 43 | 42 12 | nfeq | |- F/ y ( A ( x e. C , y e. D |-> R ) B ) = S |
| 44 | 43 | a1i | |- ( ( ph /\ x = A ) -> F/ y ( A ( x e. C , y e. D |-> R ) B ) = S ) |
| 45 | 21 37 39 44 | sbciedf | |- ( ( ph /\ x = A ) -> ( [. B / y ]. ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
| 46 | nfcv | |- F/_ x A |
|
| 47 | nfmpo1 | |- F/_ x ( x e. C , y e. D |-> R ) |
|
| 48 | 46 47 10 | nfov | |- F/_ x ( A ( x e. C , y e. D |-> R ) B ) |
| 49 | 48 11 | nfeq | |- F/ x ( A ( x e. C , y e. D |-> R ) B ) = S |
| 50 | 49 | a1i | |- ( ph -> F/ x ( A ( x e. C , y e. D |-> R ) B ) = S ) |
| 51 | 4 45 7 50 | sbciedf | |- ( ph -> ( [. A / x ]. [. B / y ]. ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x ( x e. C , y e. D |-> R ) y ) = R ) <-> ( A ( x e. C , y e. D |-> R ) B ) = S ) ) |
| 52 | 20 51 | mpbid | |- ( ph -> ( A ( x e. C , y e. D |-> R ) B ) = S ) |
| 53 | 13 52 | eqtrd | |- ( ph -> ( A F B ) = S ) |