This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: First substitution of an alternative determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by AV, 27-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetfval1.d | |- D = ( N maDet R ) |
|
| mdetfval1.a | |- A = ( N Mat R ) |
||
| mdetfval1.b | |- B = ( Base ` A ) |
||
| mdetfval1.p | |- P = ( Base ` ( SymGrp ` N ) ) |
||
| mdetfval1.y | |- Y = ( ZRHom ` R ) |
||
| mdetfval1.s | |- S = ( pmSgn ` N ) |
||
| mdetfval1.t | |- .x. = ( .r ` R ) |
||
| mdetfval1.u | |- U = ( mulGrp ` R ) |
||
| Assertion | mdetfval1 | |- D = ( m e. B |-> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetfval1.d | |- D = ( N maDet R ) |
|
| 2 | mdetfval1.a | |- A = ( N Mat R ) |
|
| 3 | mdetfval1.b | |- B = ( Base ` A ) |
|
| 4 | mdetfval1.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 5 | mdetfval1.y | |- Y = ( ZRHom ` R ) |
|
| 6 | mdetfval1.s | |- S = ( pmSgn ` N ) |
|
| 7 | mdetfval1.t | |- .x. = ( .r ` R ) |
|
| 8 | mdetfval1.u | |- U = ( mulGrp ` R ) |
|
| 9 | 1 2 3 4 5 6 7 8 | mdetfval | |- D = ( m e. B |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
| 10 | 4 6 | cofipsgn | |- ( ( N e. Fin /\ p e. P ) -> ( ( Y o. S ) ` p ) = ( Y ` ( S ` p ) ) ) |
| 11 | 10 | oveq1d | |- ( ( N e. Fin /\ p e. P ) -> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) = ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) |
| 12 | 11 | mpteq2dva | |- ( N e. Fin -> ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) = ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) |
| 13 | 12 | oveq2d | |- ( N e. Fin -> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) = ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
| 14 | 13 | mpteq2dv | |- ( N e. Fin -> ( m e. B |-> ( R gsum ( p e. P |-> ( ( ( Y o. S ) ` p ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = ( m e. B |-> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 15 | 9 14 | eqtrid | |- ( N e. Fin -> D = ( m e. B |-> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 16 | df-nel | |- ( N e/ Fin <-> -. N e. Fin ) |
|
| 17 | 1 | nfimdetndef | |- ( N e/ Fin -> D = (/) ) |
| 18 | 2 | fveq2i | |- ( Base ` A ) = ( Base ` ( N Mat R ) ) |
| 19 | 3 18 | eqtri | |- B = ( Base ` ( N Mat R ) ) |
| 20 | 16 | biimpi | |- ( N e/ Fin -> -. N e. Fin ) |
| 21 | 20 | intnanrd | |- ( N e/ Fin -> -. ( N e. Fin /\ R e. _V ) ) |
| 22 | matbas0 | |- ( -. ( N e. Fin /\ R e. _V ) -> ( Base ` ( N Mat R ) ) = (/) ) |
|
| 23 | 21 22 | syl | |- ( N e/ Fin -> ( Base ` ( N Mat R ) ) = (/) ) |
| 24 | 19 23 | eqtrid | |- ( N e/ Fin -> B = (/) ) |
| 25 | 24 | mpteq1d | |- ( N e/ Fin -> ( m e. B |-> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = ( m e. (/) |-> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 26 | mpt0 | |- ( m e. (/) |-> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = (/) |
|
| 27 | 25 26 | eqtrdi | |- ( N e/ Fin -> ( m e. B |-> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = (/) ) |
| 28 | 17 27 | eqtr4d | |- ( N e/ Fin -> D = ( m e. B |-> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 29 | 16 28 | sylbir | |- ( -. N e. Fin -> D = ( m e. B |-> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 30 | 15 29 | pm2.61i | |- D = ( m e. B |-> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |