This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Full substitution of an alternative determinant definition (also known as Leibniz' Formula). (Contributed by Stefan O'Rear, 3-Oct-2015) (Revised by AV, 26-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetfval1.d | |- D = ( N maDet R ) |
|
| mdetfval1.a | |- A = ( N Mat R ) |
||
| mdetfval1.b | |- B = ( Base ` A ) |
||
| mdetfval1.p | |- P = ( Base ` ( SymGrp ` N ) ) |
||
| mdetfval1.y | |- Y = ( ZRHom ` R ) |
||
| mdetfval1.s | |- S = ( pmSgn ` N ) |
||
| mdetfval1.t | |- .x. = ( .r ` R ) |
||
| mdetfval1.u | |- U = ( mulGrp ` R ) |
||
| Assertion | mdetleib1 | |- ( M e. B -> ( D ` M ) = ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetfval1.d | |- D = ( N maDet R ) |
|
| 2 | mdetfval1.a | |- A = ( N Mat R ) |
|
| 3 | mdetfval1.b | |- B = ( Base ` A ) |
|
| 4 | mdetfval1.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 5 | mdetfval1.y | |- Y = ( ZRHom ` R ) |
|
| 6 | mdetfval1.s | |- S = ( pmSgn ` N ) |
|
| 7 | mdetfval1.t | |- .x. = ( .r ` R ) |
|
| 8 | mdetfval1.u | |- U = ( mulGrp ` R ) |
|
| 9 | oveq | |- ( m = M -> ( ( p ` x ) m x ) = ( ( p ` x ) M x ) ) |
|
| 10 | 9 | mpteq2dv | |- ( m = M -> ( x e. N |-> ( ( p ` x ) m x ) ) = ( x e. N |-> ( ( p ` x ) M x ) ) ) |
| 11 | 10 | oveq2d | |- ( m = M -> ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) = ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) |
| 12 | 11 | oveq2d | |- ( m = M -> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) = ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) |
| 13 | 12 | mpteq2dv | |- ( m = M -> ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) = ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) |
| 14 | 13 | oveq2d | |- ( m = M -> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) = ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) ) |
| 15 | 1 2 3 4 5 6 7 8 | mdetfval1 | |- D = ( m e. B |-> ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
| 16 | ovex | |- ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) e. _V |
|
| 17 | 14 15 16 | fvmpt | |- ( M e. B -> ( D ` M ) = ( R gsum ( p e. P |-> ( ( Y ` ( S ` p ) ) .x. ( U gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) ) |