This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant is not defined for an infinite matrix. (Contributed by AV, 27-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfimdetndef.d | |- D = ( N maDet R ) |
|
| Assertion | nfimdetndef | |- ( N e/ Fin -> D = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfimdetndef.d | |- D = ( N maDet R ) |
|
| 2 | eqid | |- ( N Mat R ) = ( N Mat R ) |
|
| 3 | eqid | |- ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) ) |
|
| 4 | eqid | |- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
|
| 5 | eqid | |- ( ZRHom ` R ) = ( ZRHom ` R ) |
|
| 6 | eqid | |- ( pmSgn ` N ) = ( pmSgn ` N ) |
|
| 7 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 8 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 9 | 1 2 3 4 5 6 7 8 | mdetfval | |- D = ( m e. ( Base ` ( N Mat R ) ) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) |
| 10 | df-nel | |- ( N e/ Fin <-> -. N e. Fin ) |
|
| 11 | 10 | biimpi | |- ( N e/ Fin -> -. N e. Fin ) |
| 12 | 11 | intnanrd | |- ( N e/ Fin -> -. ( N e. Fin /\ R e. _V ) ) |
| 13 | matbas0 | |- ( -. ( N e. Fin /\ R e. _V ) -> ( Base ` ( N Mat R ) ) = (/) ) |
|
| 14 | 12 13 | syl | |- ( N e/ Fin -> ( Base ` ( N Mat R ) ) = (/) ) |
| 15 | 14 | mpteq1d | |- ( N e/ Fin -> ( m e. ( Base ` ( N Mat R ) ) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = ( m e. (/) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) ) |
| 16 | mpt0 | |- ( m e. (/) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = (/) |
|
| 17 | 15 16 | eqtrdi | |- ( N e/ Fin -> ( m e. ( Base ` ( N Mat R ) ) |-> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) m x ) ) ) ) ) ) ) = (/) ) |
| 18 | 9 17 | eqtrid | |- ( N e/ Fin -> D = (/) ) |