This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ringsrg | |- ( R e. Ring -> R e. SRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcmn | |- ( R e. Ring -> R e. CMnd ) |
|
| 2 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 3 | 2 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 6 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 7 | 4 2 5 6 | isring | |- ( R e. Ring <-> ( R e. Grp /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) |
| 8 | 7 | simp3bi | |- ( R e. Ring -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) |
| 9 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 10 | 4 6 9 | ringlz | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) ) |
| 11 | 4 6 9 | ringrz | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 12 | 10 11 | jca | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) /\ ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) |
| 13 | 12 | ralrimiva | |- ( R e. Ring -> A. x e. ( Base ` R ) ( ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) /\ ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) |
| 14 | r19.26 | |- ( A. x e. ( Base ` R ) ( A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) /\ ( ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) /\ ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) <-> ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) /\ A. x e. ( Base ` R ) ( ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) /\ ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) ) |
|
| 15 | 8 13 14 | sylanbrc | |- ( R e. Ring -> A. x e. ( Base ` R ) ( A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) /\ ( ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) /\ ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) ) |
| 16 | 4 2 5 6 9 | issrg | |- ( R e. SRing <-> ( R e. CMnd /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) ( A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) /\ ( ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) /\ ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) ) ) |
| 17 | 1 3 15 16 | syl3anbrc | |- ( R e. Ring -> R e. SRing ) |