This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrsup0 | |- sup ( (/) , RR* , < ) = -oo |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | |- (/) C_ RR* |
|
| 2 | mnfxr | |- -oo e. RR* |
|
| 3 | ral0 | |- A. y e. (/) -. -oo < y |
|
| 4 | rexr | |- ( y e. RR -> y e. RR* ) |
|
| 5 | nltmnf | |- ( y e. RR* -> -. y < -oo ) |
|
| 6 | 4 5 | syl | |- ( y e. RR -> -. y < -oo ) |
| 7 | 6 | pm2.21d | |- ( y e. RR -> ( y < -oo -> E. z e. (/) y < z ) ) |
| 8 | 7 | rgen | |- A. y e. RR ( y < -oo -> E. z e. (/) y < z ) |
| 9 | supxr | |- ( ( ( (/) C_ RR* /\ -oo e. RR* ) /\ ( A. y e. (/) -. -oo < y /\ A. y e. RR ( y < -oo -> E. z e. (/) y < z ) ) ) -> sup ( (/) , RR* , < ) = -oo ) |
|
| 10 | 1 2 3 8 9 | mp4an | |- sup ( (/) , RR* , < ) = -oo |