This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ulmf2 | |- ( ( F Fn Z /\ F ( ~~>u ` S ) G ) -> F : Z --> ( CC ^m S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmpm | |- ( F ( ~~>u ` S ) G -> F e. ( ( CC ^m S ) ^pm ZZ ) ) |
|
| 2 | ovex | |- ( CC ^m S ) e. _V |
|
| 3 | zex | |- ZZ e. _V |
|
| 4 | 2 3 | elpm2 | |- ( F e. ( ( CC ^m S ) ^pm ZZ ) <-> ( F : dom F --> ( CC ^m S ) /\ dom F C_ ZZ ) ) |
| 5 | 4 | simplbi | |- ( F e. ( ( CC ^m S ) ^pm ZZ ) -> F : dom F --> ( CC ^m S ) ) |
| 6 | 1 5 | syl | |- ( F ( ~~>u ` S ) G -> F : dom F --> ( CC ^m S ) ) |
| 7 | 6 | adantl | |- ( ( F Fn Z /\ F ( ~~>u ` S ) G ) -> F : dom F --> ( CC ^m S ) ) |
| 8 | fndm | |- ( F Fn Z -> dom F = Z ) |
|
| 9 | 8 | adantr | |- ( ( F Fn Z /\ F ( ~~>u ` S ) G ) -> dom F = Z ) |
| 10 | 9 | feq2d | |- ( ( F Fn Z /\ F ( ~~>u ` S ) G ) -> ( F : dom F --> ( CC ^m S ) <-> F : Z --> ( CC ^m S ) ) ) |
| 11 | 7 10 | mpbid | |- ( ( F Fn Z /\ F ( ~~>u ` S ) G ) -> F : Z --> ( CC ^m S ) ) |