This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closure of a complement is the complement of the interior. (Contributed by Jeff Hankins, 31-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | clsdif | |- ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` ( X \ A ) ) = ( X \ ( ( int ` J ) ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | difss | |- ( X \ A ) C_ X |
|
| 3 | 1 | clsval2 | |- ( ( J e. Top /\ ( X \ A ) C_ X ) -> ( ( cls ` J ) ` ( X \ A ) ) = ( X \ ( ( int ` J ) ` ( X \ ( X \ A ) ) ) ) ) |
| 4 | 2 3 | mpan2 | |- ( J e. Top -> ( ( cls ` J ) ` ( X \ A ) ) = ( X \ ( ( int ` J ) ` ( X \ ( X \ A ) ) ) ) ) |
| 5 | 4 | adantr | |- ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` ( X \ A ) ) = ( X \ ( ( int ` J ) ` ( X \ ( X \ A ) ) ) ) ) |
| 6 | simpr | |- ( ( J e. Top /\ A C_ X ) -> A C_ X ) |
|
| 7 | dfss4 | |- ( A C_ X <-> ( X \ ( X \ A ) ) = A ) |
|
| 8 | 6 7 | sylib | |- ( ( J e. Top /\ A C_ X ) -> ( X \ ( X \ A ) ) = A ) |
| 9 | 8 | fveq2d | |- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` ( X \ ( X \ A ) ) ) = ( ( int ` J ) ` A ) ) |
| 10 | 9 | difeq2d | |- ( ( J e. Top /\ A C_ X ) -> ( X \ ( ( int ` J ) ` ( X \ ( X \ A ) ) ) ) = ( X \ ( ( int ` J ) ` A ) ) ) |
| 11 | 5 10 | eqtrd | |- ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` ( X \ A ) ) = ( X \ ( ( int ` J ) ` A ) ) ) |