This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number is an integer iff its absolute value is an integer. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absz | |- ( A e. RR -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( ( abs ` A ) = A -> ( ( abs ` A ) e. ZZ <-> A e. ZZ ) ) |
|
| 2 | 1 | bicomd | |- ( ( abs ` A ) = A -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) ) |
| 3 | 2 | a1i | |- ( A e. RR -> ( ( abs ` A ) = A -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) ) ) |
| 4 | recn | |- ( A e. RR -> A e. CC ) |
|
| 5 | znegclb | |- ( A e. CC -> ( A e. ZZ <-> -u A e. ZZ ) ) |
|
| 6 | 4 5 | syl | |- ( A e. RR -> ( A e. ZZ <-> -u A e. ZZ ) ) |
| 7 | eleq1 | |- ( ( abs ` A ) = -u A -> ( ( abs ` A ) e. ZZ <-> -u A e. ZZ ) ) |
|
| 8 | 7 | bibi2d | |- ( ( abs ` A ) = -u A -> ( ( A e. ZZ <-> ( abs ` A ) e. ZZ ) <-> ( A e. ZZ <-> -u A e. ZZ ) ) ) |
| 9 | 6 8 | syl5ibrcom | |- ( A e. RR -> ( ( abs ` A ) = -u A -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) ) ) |
| 10 | absor | |- ( A e. RR -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |
|
| 11 | 3 9 10 | mpjaod | |- ( A e. RR -> ( A e. ZZ <-> ( abs ` A ) e. ZZ ) ) |