This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the scalar multiplication in the matrix ring. ( lmodvscl analog.) (Contributed by AV, 27-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matvscl.k | |- K = ( Base ` R ) |
|
| matvscl.a | |- A = ( N Mat R ) |
||
| matvscl.b | |- B = ( Base ` A ) |
||
| matvscl.s | |- .x. = ( .s ` A ) |
||
| Assertion | matvscl | |- ( ( ( N e. Fin /\ R e. Ring ) /\ ( C e. K /\ X e. B ) ) -> ( C .x. X ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matvscl.k | |- K = ( Base ` R ) |
|
| 2 | matvscl.a | |- A = ( N Mat R ) |
|
| 3 | matvscl.b | |- B = ( Base ` A ) |
|
| 4 | matvscl.s | |- .x. = ( .s ` A ) |
|
| 5 | 2 | matlmod | |- ( ( N e. Fin /\ R e. Ring ) -> A e. LMod ) |
| 6 | 5 | adantr | |- ( ( ( N e. Fin /\ R e. Ring ) /\ ( C e. K /\ X e. B ) ) -> A e. LMod ) |
| 7 | 2 | matsca2 | |- ( ( N e. Fin /\ R e. Ring ) -> R = ( Scalar ` A ) ) |
| 8 | 7 | fveq2d | |- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` R ) = ( Base ` ( Scalar ` A ) ) ) |
| 9 | 1 8 | eqtrid | |- ( ( N e. Fin /\ R e. Ring ) -> K = ( Base ` ( Scalar ` A ) ) ) |
| 10 | 9 | eleq2d | |- ( ( N e. Fin /\ R e. Ring ) -> ( C e. K <-> C e. ( Base ` ( Scalar ` A ) ) ) ) |
| 11 | 10 | biimpd | |- ( ( N e. Fin /\ R e. Ring ) -> ( C e. K -> C e. ( Base ` ( Scalar ` A ) ) ) ) |
| 12 | 11 | adantrd | |- ( ( N e. Fin /\ R e. Ring ) -> ( ( C e. K /\ X e. B ) -> C e. ( Base ` ( Scalar ` A ) ) ) ) |
| 13 | 12 | imp | |- ( ( ( N e. Fin /\ R e. Ring ) /\ ( C e. K /\ X e. B ) ) -> C e. ( Base ` ( Scalar ` A ) ) ) |
| 14 | simprr | |- ( ( ( N e. Fin /\ R e. Ring ) /\ ( C e. K /\ X e. B ) ) -> X e. B ) |
|
| 15 | eqid | |- ( Scalar ` A ) = ( Scalar ` A ) |
|
| 16 | eqid | |- ( Base ` ( Scalar ` A ) ) = ( Base ` ( Scalar ` A ) ) |
|
| 17 | 3 15 4 16 | lmodvscl | |- ( ( A e. LMod /\ C e. ( Base ` ( Scalar ` A ) ) /\ X e. B ) -> ( C .x. X ) e. B ) |
| 18 | 6 13 14 17 | syl3anc | |- ( ( ( N e. Fin /\ R e. Ring ) /\ ( C e. K /\ X e. B ) ) -> ( C .x. X ) e. B ) |