This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the scalar multiplication in the matrix ring. ( lmodvscl analog.) (Contributed by AV, 27-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matvscl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| matvscl.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| matvscl.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| matvscl.s | ⊢ · = ( ·𝑠 ‘ 𝐴 ) | ||
| Assertion | matvscl | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝐶 · 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matvscl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 2 | matvscl.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 3 | matvscl.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | matvscl.s | ⊢ · = ( ·𝑠 ‘ 𝐴 ) | |
| 5 | 2 | matlmod | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ LMod ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → 𝐴 ∈ LMod ) |
| 7 | 2 | matsca2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 9 | 1 8 | eqtrid | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 10 | 9 | eleq2d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐶 ∈ 𝐾 ↔ 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 11 | 10 | biimpd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐶 ∈ 𝐾 → 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 12 | 11 | adantrd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) ) |
| 13 | 12 | imp | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 14 | simprr | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 15 | eqid | ⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) | |
| 16 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) | |
| 17 | 3 15 4 16 | lmodvscl | ⊢ ( ( 𝐴 ∈ LMod ∧ 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐶 · 𝑋 ) ∈ 𝐵 ) |
| 18 | 6 13 14 17 | syl3anc | ⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝐶 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝐶 · 𝑋 ) ∈ 𝐵 ) |