This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite commutative sums in a matrix algebra are taken componentwise. (Contributed by AV, 26-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matgsum.a | |- A = ( N Mat R ) |
|
| matgsum.b | |- B = ( Base ` A ) |
||
| matgsum.z | |- .0. = ( 0g ` A ) |
||
| matgsum.i | |- ( ph -> N e. Fin ) |
||
| matgsum.j | |- ( ph -> J e. W ) |
||
| matgsum.r | |- ( ph -> R e. Ring ) |
||
| matgsum.f | |- ( ( ph /\ y e. J ) -> ( i e. N , j e. N |-> U ) e. B ) |
||
| matgsum.w | |- ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) finSupp .0. ) |
||
| Assertion | matgsum | |- ( ph -> ( A gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matgsum.a | |- A = ( N Mat R ) |
|
| 2 | matgsum.b | |- B = ( Base ` A ) |
|
| 3 | matgsum.z | |- .0. = ( 0g ` A ) |
|
| 4 | matgsum.i | |- ( ph -> N e. Fin ) |
|
| 5 | matgsum.j | |- ( ph -> J e. W ) |
|
| 6 | matgsum.r | |- ( ph -> R e. Ring ) |
|
| 7 | matgsum.f | |- ( ( ph /\ y e. J ) -> ( i e. N , j e. N |-> U ) e. B ) |
|
| 8 | matgsum.w | |- ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) finSupp .0. ) |
|
| 9 | 5 | mptexd | |- ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) e. _V ) |
| 10 | 1 | ovexi | |- A e. _V |
| 11 | 10 | a1i | |- ( ph -> A e. _V ) |
| 12 | ovexd | |- ( ph -> ( R freeLMod ( N X. N ) ) e. _V ) |
|
| 13 | eqid | |- ( R freeLMod ( N X. N ) ) = ( R freeLMod ( N X. N ) ) |
|
| 14 | 1 13 | matbas | |- ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 15 | 4 6 14 | syl2anc | |- ( ph -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 16 | 15 | eqcomd | |- ( ph -> ( Base ` A ) = ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 17 | 1 13 | matplusg | |- ( ( N e. Fin /\ R e. Ring ) -> ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` A ) ) |
| 18 | 4 6 17 | syl2anc | |- ( ph -> ( +g ` ( R freeLMod ( N X. N ) ) ) = ( +g ` A ) ) |
| 19 | 18 | eqcomd | |- ( ph -> ( +g ` A ) = ( +g ` ( R freeLMod ( N X. N ) ) ) ) |
| 20 | 9 11 12 16 19 | gsumpropd | |- ( ph -> ( A gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) ) |
| 21 | mpompts | |- ( i e. N , j e. N |-> U ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) |
|
| 22 | 21 | a1i | |- ( ph -> ( i e. N , j e. N |-> U ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) |
| 23 | 22 | mpteq2dv | |- ( ph -> ( y e. J |-> ( i e. N , j e. N |-> U ) ) = ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) |
| 24 | 23 | oveq2d | |- ( ph -> ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) ) |
| 25 | eqid | |- ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` ( R freeLMod ( N X. N ) ) ) |
|
| 26 | eqid | |- ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` ( R freeLMod ( N X. N ) ) ) |
|
| 27 | xpfi | |- ( ( N e. Fin /\ N e. Fin ) -> ( N X. N ) e. Fin ) |
|
| 28 | 4 4 27 | syl2anc | |- ( ph -> ( N X. N ) e. Fin ) |
| 29 | 7 2 | eleqtrdi | |- ( ( ph /\ y e. J ) -> ( i e. N , j e. N |-> U ) e. ( Base ` A ) ) |
| 30 | 21 | eqcomi | |- ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) = ( i e. N , j e. N |-> U ) |
| 31 | 30 | a1i | |- ( ( ph /\ y e. J ) -> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) = ( i e. N , j e. N |-> U ) ) |
| 32 | 4 6 | jca | |- ( ph -> ( N e. Fin /\ R e. Ring ) ) |
| 33 | 32 | adantr | |- ( ( ph /\ y e. J ) -> ( N e. Fin /\ R e. Ring ) ) |
| 34 | 33 14 | syl | |- ( ( ph /\ y e. J ) -> ( Base ` ( R freeLMod ( N X. N ) ) ) = ( Base ` A ) ) |
| 35 | 29 31 34 | 3eltr4d | |- ( ( ph /\ y e. J ) -> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) e. ( Base ` ( R freeLMod ( N X. N ) ) ) ) |
| 36 | 30 | mpteq2i | |- ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) = ( y e. J |-> ( i e. N , j e. N |-> U ) ) |
| 37 | 3 | eqcomi | |- ( 0g ` A ) = .0. |
| 38 | 8 36 37 | 3brtr4g | |- ( ph -> ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) finSupp ( 0g ` A ) ) |
| 39 | 1 13 | mat0 | |- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` A ) ) |
| 40 | 4 6 39 | syl2anc | |- ( ph -> ( 0g ` ( R freeLMod ( N X. N ) ) ) = ( 0g ` A ) ) |
| 41 | 38 40 | breqtrrd | |- ( ph -> ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) finSupp ( 0g ` ( R freeLMod ( N X. N ) ) ) ) |
| 42 | 13 25 26 28 5 6 35 41 | frlmgsum | |- ( ph -> ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) ) |
| 43 | 24 42 | eqtrd | |- ( ph -> ( ( R freeLMod ( N X. N ) ) gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) ) |
| 44 | fvex | |- ( 2nd ` z ) e. _V |
|
| 45 | csbov2g | |- ( ( 2nd ` z ) e. _V -> [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) = ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) ) |
|
| 46 | 44 45 | ax-mp | |- [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) = ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) |
| 47 | 46 | csbeq2i | |- [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) = [_ ( 1st ` z ) / i ]_ ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) |
| 48 | fvex | |- ( 1st ` z ) e. _V |
|
| 49 | csbov2g | |- ( ( 1st ` z ) e. _V -> [_ ( 1st ` z ) / i ]_ ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) = ( R gsum [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) ) |
|
| 50 | 48 49 | ax-mp | |- [_ ( 1st ` z ) / i ]_ ( R gsum [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) = ( R gsum [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) |
| 51 | csbmpt2 | |- ( ( 2nd ` z ) e. _V -> [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) ) |
|
| 52 | 44 51 | ax-mp | |- [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) |
| 53 | 52 | csbeq2i | |- [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = [_ ( 1st ` z ) / i ]_ ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) |
| 54 | csbmpt2 | |- ( ( 1st ` z ) e. _V -> [_ ( 1st ` z ) / i ]_ ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) = ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) |
|
| 55 | 48 54 | ax-mp | |- [_ ( 1st ` z ) / i ]_ ( y e. J |-> [_ ( 2nd ` z ) / j ]_ U ) = ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) |
| 56 | 53 55 | eqtri | |- [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) = ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) |
| 57 | 56 | oveq2i | |- ( R gsum [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( y e. J |-> U ) ) = ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) |
| 58 | 47 50 57 | 3eqtrri | |- ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) = [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) |
| 59 | 58 | mpteq2i | |- ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) ) |
| 60 | mpompts | |- ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) = ( z e. ( N X. N ) |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ ( R gsum ( y e. J |-> U ) ) ) |
|
| 61 | 59 60 | eqtr4i | |- ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) |
| 62 | 61 | a1i | |- ( ph -> ( z e. ( N X. N ) |-> ( R gsum ( y e. J |-> [_ ( 1st ` z ) / i ]_ [_ ( 2nd ` z ) / j ]_ U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) ) |
| 63 | 20 43 62 | 3eqtrd | |- ( ph -> ( A gsum ( y e. J |-> ( i e. N , j e. N |-> U ) ) ) = ( i e. N , j e. N |-> ( R gsum ( y e. J |-> U ) ) ) ) |