This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The matrix ring has the same scalar multiplication as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015) (Proof shortened by AV, 12-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matbas.a | |- A = ( N Mat R ) |
|
| matbas.g | |- G = ( R freeLMod ( N X. N ) ) |
||
| Assertion | matvsca | |- ( ( N e. Fin /\ R e. V ) -> ( .s ` G ) = ( .s ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matbas.a | |- A = ( N Mat R ) |
|
| 2 | matbas.g | |- G = ( R freeLMod ( N X. N ) ) |
|
| 3 | vscaid | |- .s = Slot ( .s ` ndx ) |
|
| 4 | vscandxnmulrndx | |- ( .s ` ndx ) =/= ( .r ` ndx ) |
|
| 5 | 3 4 | setsnid | |- ( .s ` G ) = ( .s ` ( G sSet <. ( .r ` ndx ) , ( R maMul <. N , N , N >. ) >. ) ) |
| 6 | eqid | |- ( R maMul <. N , N , N >. ) = ( R maMul <. N , N , N >. ) |
|
| 7 | 1 2 6 | matval | |- ( ( N e. Fin /\ R e. V ) -> A = ( G sSet <. ( .r ` ndx ) , ( R maMul <. N , N , N >. ) >. ) ) |
| 8 | 7 | fveq2d | |- ( ( N e. Fin /\ R e. V ) -> ( .s ` A ) = ( .s ` ( G sSet <. ( .r ` ndx ) , ( R maMul <. N , N , N >. ) >. ) ) ) |
| 9 | 5 8 | eqtr4id | |- ( ( N e. Fin /\ R e. V ) -> ( .s ` G ) = ( .s ` A ) ) |