This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transpose of the transpose of a square matrix is the square matrix itself. (Contributed by SO, 17-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mattposcl.a | |- A = ( N Mat R ) |
|
| mattposcl.b | |- B = ( Base ` A ) |
||
| Assertion | mattpostpos | |- ( M e. B -> tpos tpos M = M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mattposcl.a | |- A = ( N Mat R ) |
|
| 2 | mattposcl.b | |- B = ( Base ` A ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 1 3 2 | matbas2i | |- ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 5 | elmapi | |- ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
|
| 6 | 4 5 | syl | |- ( M e. B -> M : ( N X. N ) --> ( Base ` R ) ) |
| 7 | frel | |- ( M : ( N X. N ) --> ( Base ` R ) -> Rel M ) |
|
| 8 | 6 7 | syl | |- ( M e. B -> Rel M ) |
| 9 | relxp | |- Rel ( N X. N ) |
|
| 10 | 6 | fdmd | |- ( M e. B -> dom M = ( N X. N ) ) |
| 11 | 10 | releqd | |- ( M e. B -> ( Rel dom M <-> Rel ( N X. N ) ) ) |
| 12 | 9 11 | mpbiri | |- ( M e. B -> Rel dom M ) |
| 13 | tpostpos2 | |- ( ( Rel M /\ Rel dom M ) -> tpos tpos M = M ) |
|
| 14 | 8 12 13 | syl2anc | |- ( M e. B -> tpos tpos M = M ) |