This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two square matrices of the same dimension are equal if they have the same entries. (Contributed by AV, 25-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqmat.a | |- A = ( N Mat R ) |
|
| eqmat.b | |- B = ( Base ` A ) |
||
| Assertion | eqmat | |- ( ( X e. B /\ Y e. B ) -> ( X = Y <-> A. i e. N A. j e. N ( i X j ) = ( i Y j ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqmat.a | |- A = ( N Mat R ) |
|
| 2 | eqmat.b | |- B = ( Base ` A ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 1 3 2 | matbas2i | |- ( X e. B -> X e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 5 | elmapfn | |- ( X e. ( ( Base ` R ) ^m ( N X. N ) ) -> X Fn ( N X. N ) ) |
|
| 6 | 4 5 | syl | |- ( X e. B -> X Fn ( N X. N ) ) |
| 7 | 1 3 2 | matbas2i | |- ( Y e. B -> Y e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 8 | elmapfn | |- ( Y e. ( ( Base ` R ) ^m ( N X. N ) ) -> Y Fn ( N X. N ) ) |
|
| 9 | 7 8 | syl | |- ( Y e. B -> Y Fn ( N X. N ) ) |
| 10 | eqfnov2 | |- ( ( X Fn ( N X. N ) /\ Y Fn ( N X. N ) ) -> ( X = Y <-> A. i e. N A. j e. N ( i X j ) = ( i Y j ) ) ) |
|
| 11 | 6 9 10 | syl2an | |- ( ( X e. B /\ Y e. B ) -> ( X = Y <-> A. i e. N A. j e. N ( i X j ) = ( i Y j ) ) ) |