This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1rhmval.k | |- K = ( Base ` R ) |
|
| mat1rhmval.a | |- A = ( { E } Mat R ) |
||
| mat1rhmval.b | |- B = ( Base ` A ) |
||
| mat1rhmval.o | |- O = <. E , E >. |
||
| mat1rhmval.f | |- F = ( x e. K |-> { <. O , x >. } ) |
||
| Assertion | mat1f1o | |- ( ( R e. Ring /\ E e. V ) -> F : K -1-1-onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | |- K = ( Base ` R ) |
|
| 2 | mat1rhmval.a | |- A = ( { E } Mat R ) |
|
| 3 | mat1rhmval.b | |- B = ( Base ` A ) |
|
| 4 | mat1rhmval.o | |- O = <. E , E >. |
|
| 5 | mat1rhmval.f | |- F = ( x e. K |-> { <. O , x >. } ) |
|
| 6 | 1 | fvexi | |- K e. _V |
| 7 | opex | |- <. E , E >. e. _V |
|
| 8 | 4 7 | eqeltri | |- O e. _V |
| 9 | 6 8 | pm3.2i | |- ( K e. _V /\ O e. _V ) |
| 10 | vex | |- x e. _V |
|
| 11 | 8 10 | xpsn | |- ( { O } X. { x } ) = { <. O , x >. } |
| 12 | 11 | eqcomi | |- { <. O , x >. } = ( { O } X. { x } ) |
| 13 | 12 | mpteq2i | |- ( x e. K |-> { <. O , x >. } ) = ( x e. K |-> ( { O } X. { x } ) ) |
| 14 | 13 | mapsnf1o | |- ( ( K e. _V /\ O e. _V ) -> ( x e. K |-> { <. O , x >. } ) : K -1-1-onto-> ( K ^m { O } ) ) |
| 15 | 9 14 | mp1i | |- ( ( R e. Ring /\ E e. V ) -> ( x e. K |-> { <. O , x >. } ) : K -1-1-onto-> ( K ^m { O } ) ) |
| 16 | 5 | a1i | |- ( ( R e. Ring /\ E e. V ) -> F = ( x e. K |-> { <. O , x >. } ) ) |
| 17 | eqidd | |- ( ( R e. Ring /\ E e. V ) -> K = K ) |
|
| 18 | 4 | sneqi | |- { O } = { <. E , E >. } |
| 19 | simpr | |- ( ( R e. Ring /\ E e. V ) -> E e. V ) |
|
| 20 | xpsng | |- ( ( E e. V /\ E e. V ) -> ( { E } X. { E } ) = { <. E , E >. } ) |
|
| 21 | 19 20 | sylancom | |- ( ( R e. Ring /\ E e. V ) -> ( { E } X. { E } ) = { <. E , E >. } ) |
| 22 | 18 21 | eqtr4id | |- ( ( R e. Ring /\ E e. V ) -> { O } = ( { E } X. { E } ) ) |
| 23 | 22 | oveq2d | |- ( ( R e. Ring /\ E e. V ) -> ( K ^m { O } ) = ( K ^m ( { E } X. { E } ) ) ) |
| 24 | snfi | |- { E } e. Fin |
|
| 25 | simpl | |- ( ( R e. Ring /\ E e. V ) -> R e. Ring ) |
|
| 26 | 2 1 | matbas2 | |- ( ( { E } e. Fin /\ R e. Ring ) -> ( K ^m ( { E } X. { E } ) ) = ( Base ` A ) ) |
| 27 | 24 25 26 | sylancr | |- ( ( R e. Ring /\ E e. V ) -> ( K ^m ( { E } X. { E } ) ) = ( Base ` A ) ) |
| 28 | 23 27 | eqtrd | |- ( ( R e. Ring /\ E e. V ) -> ( K ^m { O } ) = ( Base ` A ) ) |
| 29 | 3 28 | eqtr4id | |- ( ( R e. Ring /\ E e. V ) -> B = ( K ^m { O } ) ) |
| 30 | 16 17 29 | f1oeq123d | |- ( ( R e. Ring /\ E e. V ) -> ( F : K -1-1-onto-> B <-> ( x e. K |-> { <. O , x >. } ) : K -1-1-onto-> ( K ^m { O } ) ) ) |
| 31 | 15 30 | mpbird | |- ( ( R e. Ring /\ E e. V ) -> F : K -1-1-onto-> B ) |