This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1rhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| mat1rhmval.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | ||
| mat1rhmval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mat1rhmval.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | ||
| mat1rhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) | ||
| Assertion | mat1f1o | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 : 𝐾 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 2 | mat1rhmval.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | |
| 3 | mat1rhmval.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | mat1rhmval.o | ⊢ 𝑂 = 〈 𝐸 , 𝐸 〉 | |
| 5 | mat1rhmval.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) | |
| 6 | 1 | fvexi | ⊢ 𝐾 ∈ V |
| 7 | opex | ⊢ 〈 𝐸 , 𝐸 〉 ∈ V | |
| 8 | 4 7 | eqeltri | ⊢ 𝑂 ∈ V |
| 9 | 6 8 | pm3.2i | ⊢ ( 𝐾 ∈ V ∧ 𝑂 ∈ V ) |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | 8 10 | xpsn | ⊢ ( { 𝑂 } × { 𝑥 } ) = { 〈 𝑂 , 𝑥 〉 } |
| 12 | 11 | eqcomi | ⊢ { 〈 𝑂 , 𝑥 〉 } = ( { 𝑂 } × { 𝑥 } ) |
| 13 | 12 | mpteq2i | ⊢ ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) = ( 𝑥 ∈ 𝐾 ↦ ( { 𝑂 } × { 𝑥 } ) ) |
| 14 | 13 | mapsnf1o | ⊢ ( ( 𝐾 ∈ V ∧ 𝑂 ∈ V ) → ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) : 𝐾 –1-1-onto→ ( 𝐾 ↑m { 𝑂 } ) ) |
| 15 | 9 14 | mp1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) : 𝐾 –1-1-onto→ ( 𝐾 ↑m { 𝑂 } ) ) |
| 16 | 5 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 = ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) ) |
| 17 | eqidd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐾 = 𝐾 ) | |
| 18 | 4 | sneqi | ⊢ { 𝑂 } = { 〈 𝐸 , 𝐸 〉 } |
| 19 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐸 ∈ 𝑉 ) | |
| 20 | xpsng | ⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ) → ( { 𝐸 } × { 𝐸 } ) = { 〈 𝐸 , 𝐸 〉 } ) | |
| 21 | 19 20 | sylancom | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( { 𝐸 } × { 𝐸 } ) = { 〈 𝐸 , 𝐸 〉 } ) |
| 22 | 18 21 | eqtr4id | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → { 𝑂 } = ( { 𝐸 } × { 𝐸 } ) ) |
| 23 | 22 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐾 ↑m { 𝑂 } ) = ( 𝐾 ↑m ( { 𝐸 } × { 𝐸 } ) ) ) |
| 24 | snfi | ⊢ { 𝐸 } ∈ Fin | |
| 25 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ∈ Ring ) | |
| 26 | 2 1 | matbas2 | ⊢ ( ( { 𝐸 } ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐾 ↑m ( { 𝐸 } × { 𝐸 } ) ) = ( Base ‘ 𝐴 ) ) |
| 27 | 24 25 26 | sylancr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐾 ↑m ( { 𝐸 } × { 𝐸 } ) ) = ( Base ‘ 𝐴 ) ) |
| 28 | 23 27 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐾 ↑m { 𝑂 } ) = ( Base ‘ 𝐴 ) ) |
| 29 | 3 28 | eqtr4id | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐵 = ( 𝐾 ↑m { 𝑂 } ) ) |
| 30 | 16 17 29 | f1oeq123d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝐹 : 𝐾 –1-1-onto→ 𝐵 ↔ ( 𝑥 ∈ 𝐾 ↦ { 〈 𝑂 , 𝑥 〉 } ) : 𝐾 –1-1-onto→ ( 𝐾 ↑m { 𝑂 } ) ) ) |
| 31 | 15 30 | mpbird | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝐹 : 𝐾 –1-1-onto→ 𝐵 ) |