This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixpsnf1o.f | |- F = ( x e. A |-> ( { I } X. { x } ) ) |
|
| Assertion | mapsnf1o | |- ( ( A e. V /\ I e. W ) -> F : A -1-1-onto-> ( A ^m { I } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpsnf1o.f | |- F = ( x e. A |-> ( { I } X. { x } ) ) |
|
| 2 | 1 | ixpsnf1o | |- ( I e. W -> F : A -1-1-onto-> X_ y e. { I } A ) |
| 3 | 2 | adantl | |- ( ( A e. V /\ I e. W ) -> F : A -1-1-onto-> X_ y e. { I } A ) |
| 4 | snex | |- { I } e. _V |
|
| 5 | ixpconstg | |- ( ( { I } e. _V /\ A e. V ) -> X_ y e. { I } A = ( A ^m { I } ) ) |
|
| 6 | 5 | eqcomd | |- ( ( { I } e. _V /\ A e. V ) -> ( A ^m { I } ) = X_ y e. { I } A ) |
| 7 | 4 6 | mpan | |- ( A e. V -> ( A ^m { I } ) = X_ y e. { I } A ) |
| 8 | 7 | adantr | |- ( ( A e. V /\ I e. W ) -> ( A ^m { I } ) = X_ y e. { I } A ) |
| 9 | 8 | f1oeq3d | |- ( ( A e. V /\ I e. W ) -> ( F : A -1-1-onto-> ( A ^m { I } ) <-> F : A -1-1-onto-> X_ y e. { I } A ) ) |
| 10 | 3 9 | mpbird | |- ( ( A e. V /\ I e. W ) -> F : A -1-1-onto-> ( A ^m { I } ) ) |