This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1rhmval.k | |- K = ( Base ` R ) |
|
| mat1rhmval.a | |- A = ( { E } Mat R ) |
||
| mat1rhmval.b | |- B = ( Base ` A ) |
||
| mat1rhmval.o | |- O = <. E , E >. |
||
| mat1rhmval.f | |- F = ( x e. K |-> { <. O , x >. } ) |
||
| Assertion | mat1rhmval | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( F ` X ) = { <. O , X >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | |- K = ( Base ` R ) |
|
| 2 | mat1rhmval.a | |- A = ( { E } Mat R ) |
|
| 3 | mat1rhmval.b | |- B = ( Base ` A ) |
|
| 4 | mat1rhmval.o | |- O = <. E , E >. |
|
| 5 | mat1rhmval.f | |- F = ( x e. K |-> { <. O , x >. } ) |
|
| 6 | opeq2 | |- ( x = X -> <. O , x >. = <. O , X >. ) |
|
| 7 | 6 | sneqd | |- ( x = X -> { <. O , x >. } = { <. O , X >. } ) |
| 8 | simp3 | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> X e. K ) |
|
| 9 | snex | |- { <. O , X >. } e. _V |
|
| 10 | 9 | a1i | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> { <. O , X >. } e. _V ) |
| 11 | 5 7 8 10 | fvmptd3 | |- ( ( R e. Ring /\ E e. V /\ X e. K ) -> ( F ` X ) = { <. O , X >. } ) |