This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset inheritance for set exponentiation. Theorem 99 of Suppes p. 89. (Contributed by NM, 10-Dec-2003) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapss | |- ( ( B e. V /\ A C_ B ) -> ( A ^m C ) C_ ( B ^m C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi | |- ( f e. ( A ^m C ) -> f : C --> A ) |
|
| 2 | 1 | adantl | |- ( ( ( B e. V /\ A C_ B ) /\ f e. ( A ^m C ) ) -> f : C --> A ) |
| 3 | simplr | |- ( ( ( B e. V /\ A C_ B ) /\ f e. ( A ^m C ) ) -> A C_ B ) |
|
| 4 | 2 3 | fssd | |- ( ( ( B e. V /\ A C_ B ) /\ f e. ( A ^m C ) ) -> f : C --> B ) |
| 5 | simpll | |- ( ( ( B e. V /\ A C_ B ) /\ f e. ( A ^m C ) ) -> B e. V ) |
|
| 6 | elmapex | |- ( f e. ( A ^m C ) -> ( A e. _V /\ C e. _V ) ) |
|
| 7 | 6 | simprd | |- ( f e. ( A ^m C ) -> C e. _V ) |
| 8 | 7 | adantl | |- ( ( ( B e. V /\ A C_ B ) /\ f e. ( A ^m C ) ) -> C e. _V ) |
| 9 | 5 8 | elmapd | |- ( ( ( B e. V /\ A C_ B ) /\ f e. ( A ^m C ) ) -> ( f e. ( B ^m C ) <-> f : C --> B ) ) |
| 10 | 4 9 | mpbird | |- ( ( ( B e. V /\ A C_ B ) /\ f e. ( A ^m C ) ) -> f e. ( B ^m C ) ) |
| 11 | 10 | ex | |- ( ( B e. V /\ A C_ B ) -> ( f e. ( A ^m C ) -> f e. ( B ^m C ) ) ) |
| 12 | 11 | ssrdv | |- ( ( B e. V /\ A C_ B ) -> ( A ^m C ) C_ ( B ^m C ) ) |