This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the dimension of a free module over a ring is not 0, every element of its base set is not empty. (Contributed by AV, 10-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmfibas.f | |- F = ( R freeLMod I ) |
|
| frlmfibas.n | |- N = ( Base ` R ) |
||
| elfrlmbasn0.b | |- B = ( Base ` F ) |
||
| Assertion | elfrlmbasn0 | |- ( ( I e. V /\ I =/= (/) ) -> ( X e. B -> X =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmfibas.f | |- F = ( R freeLMod I ) |
|
| 2 | frlmfibas.n | |- N = ( Base ` R ) |
|
| 3 | elfrlmbasn0.b | |- B = ( Base ` F ) |
|
| 4 | 1 2 3 | frlmbasf | |- ( ( I e. V /\ X e. B ) -> X : I --> N ) |
| 5 | 4 | ex | |- ( I e. V -> ( X e. B -> X : I --> N ) ) |
| 6 | f0dom0 | |- ( X : I --> N -> ( I = (/) <-> X = (/) ) ) |
|
| 7 | 6 | biimprd | |- ( X : I --> N -> ( X = (/) -> I = (/) ) ) |
| 8 | 7 | necon3d | |- ( X : I --> N -> ( I =/= (/) -> X =/= (/) ) ) |
| 9 | 8 | com12 | |- ( I =/= (/) -> ( X : I --> N -> X =/= (/) ) ) |
| 10 | 5 9 | sylan9 | |- ( ( I e. V /\ I =/= (/) ) -> ( X e. B -> X =/= (/) ) ) |