This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset law for least upper bounds. ( chsupss analog.) (Contributed by NM, 20-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lublem.b | |- B = ( Base ` K ) |
|
| lublem.l | |- .<_ = ( le ` K ) |
||
| lublem.u | |- U = ( lub ` K ) |
||
| Assertion | lubss | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> ( U ` S ) .<_ ( U ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lublem.b | |- B = ( Base ` K ) |
|
| 2 | lublem.l | |- .<_ = ( le ` K ) |
|
| 3 | lublem.u | |- U = ( lub ` K ) |
|
| 4 | simp1 | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> K e. CLat ) |
|
| 5 | sstr2 | |- ( S C_ T -> ( T C_ B -> S C_ B ) ) |
|
| 6 | 5 | impcom | |- ( ( T C_ B /\ S C_ T ) -> S C_ B ) |
| 7 | 6 | 3adant1 | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> S C_ B ) |
| 8 | 1 3 | clatlubcl | |- ( ( K e. CLat /\ T C_ B ) -> ( U ` T ) e. B ) |
| 9 | 8 | 3adant3 | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> ( U ` T ) e. B ) |
| 10 | 4 7 9 | 3jca | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> ( K e. CLat /\ S C_ B /\ ( U ` T ) e. B ) ) |
| 11 | simpl1 | |- ( ( ( K e. CLat /\ T C_ B /\ S C_ T ) /\ y e. S ) -> K e. CLat ) |
|
| 12 | simpl2 | |- ( ( ( K e. CLat /\ T C_ B /\ S C_ T ) /\ y e. S ) -> T C_ B ) |
|
| 13 | ssel2 | |- ( ( S C_ T /\ y e. S ) -> y e. T ) |
|
| 14 | 13 | 3ad2antl3 | |- ( ( ( K e. CLat /\ T C_ B /\ S C_ T ) /\ y e. S ) -> y e. T ) |
| 15 | 1 2 3 | lubub | |- ( ( K e. CLat /\ T C_ B /\ y e. T ) -> y .<_ ( U ` T ) ) |
| 16 | 11 12 14 15 | syl3anc | |- ( ( ( K e. CLat /\ T C_ B /\ S C_ T ) /\ y e. S ) -> y .<_ ( U ` T ) ) |
| 17 | 16 | ralrimiva | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> A. y e. S y .<_ ( U ` T ) ) |
| 18 | 1 2 3 | lubl | |- ( ( K e. CLat /\ S C_ B /\ ( U ` T ) e. B ) -> ( A. y e. S y .<_ ( U ` T ) -> ( U ` S ) .<_ ( U ` T ) ) ) |
| 19 | 10 17 18 | sylc | |- ( ( K e. CLat /\ T C_ B /\ S C_ T ) -> ( U ` S ) .<_ ( U ` T ) ) |