This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The LUB of a complete lattice subset is the least bound. (Contributed by NM, 19-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lublem.b | |- B = ( Base ` K ) |
|
| lublem.l | |- .<_ = ( le ` K ) |
||
| lublem.u | |- U = ( lub ` K ) |
||
| Assertion | lubl | |- ( ( K e. CLat /\ S C_ B /\ X e. B ) -> ( A. y e. S y .<_ X -> ( U ` S ) .<_ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lublem.b | |- B = ( Base ` K ) |
|
| 2 | lublem.l | |- .<_ = ( le ` K ) |
|
| 3 | lublem.u | |- U = ( lub ` K ) |
|
| 4 | 1 2 3 | lublem | |- ( ( K e. CLat /\ S C_ B ) -> ( A. y e. S y .<_ ( U ` S ) /\ A. z e. B ( A. y e. S y .<_ z -> ( U ` S ) .<_ z ) ) ) |
| 5 | 4 | simprd | |- ( ( K e. CLat /\ S C_ B ) -> A. z e. B ( A. y e. S y .<_ z -> ( U ` S ) .<_ z ) ) |
| 6 | breq2 | |- ( z = X -> ( y .<_ z <-> y .<_ X ) ) |
|
| 7 | 6 | ralbidv | |- ( z = X -> ( A. y e. S y .<_ z <-> A. y e. S y .<_ X ) ) |
| 8 | breq2 | |- ( z = X -> ( ( U ` S ) .<_ z <-> ( U ` S ) .<_ X ) ) |
|
| 9 | 7 8 | imbi12d | |- ( z = X -> ( ( A. y e. S y .<_ z -> ( U ` S ) .<_ z ) <-> ( A. y e. S y .<_ X -> ( U ` S ) .<_ X ) ) ) |
| 10 | 9 | rspccva | |- ( ( A. z e. B ( A. y e. S y .<_ z -> ( U ` S ) .<_ z ) /\ X e. B ) -> ( A. y e. S y .<_ X -> ( U ` S ) .<_ X ) ) |
| 11 | 5 10 | stoic3 | |- ( ( K e. CLat /\ S C_ B /\ X e. B ) -> ( A. y e. S y .<_ X -> ( U ` S ) .<_ X ) ) |