This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lublem.b | |- B = ( Base ` K ) |
|
| lublem.l | |- .<_ = ( le ` K ) |
||
| lublem.u | |- U = ( lub ` K ) |
||
| Assertion | lubub | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> X .<_ ( U ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lublem.b | |- B = ( Base ` K ) |
|
| 2 | lublem.l | |- .<_ = ( le ` K ) |
|
| 3 | lublem.u | |- U = ( lub ` K ) |
|
| 4 | 1 2 3 | lublem | |- ( ( K e. CLat /\ S C_ B ) -> ( A. y e. S y .<_ ( U ` S ) /\ A. z e. B ( A. y e. S y .<_ z -> ( U ` S ) .<_ z ) ) ) |
| 5 | 4 | simpld | |- ( ( K e. CLat /\ S C_ B ) -> A. y e. S y .<_ ( U ` S ) ) |
| 6 | breq1 | |- ( y = X -> ( y .<_ ( U ` S ) <-> X .<_ ( U ` S ) ) ) |
|
| 7 | 6 | rspccva | |- ( ( A. y e. S y .<_ ( U ` S ) /\ X e. S ) -> X .<_ ( U ` S ) ) |
| 8 | 5 7 | stoic3 | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> X .<_ ( U ` S ) ) |