This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a set is less than or equal to the least upper bound of the set. (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lublem.b | |- B = ( Base ` K ) |
|
| lublem.l | |- .<_ = ( le ` K ) |
||
| lublem.u | |- U = ( lub ` K ) |
||
| Assertion | lubel | |- ( ( K e. CLat /\ X e. S /\ S C_ B ) -> X .<_ ( U ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lublem.b | |- B = ( Base ` K ) |
|
| 2 | lublem.l | |- .<_ = ( le ` K ) |
|
| 3 | lublem.u | |- U = ( lub ` K ) |
|
| 4 | clatl | |- ( K e. CLat -> K e. Lat ) |
|
| 5 | ssel | |- ( S C_ B -> ( X e. S -> X e. B ) ) |
|
| 6 | 5 | impcom | |- ( ( X e. S /\ S C_ B ) -> X e. B ) |
| 7 | 1 3 | lubsn | |- ( ( K e. Lat /\ X e. B ) -> ( U ` { X } ) = X ) |
| 8 | 4 6 7 | syl2an | |- ( ( K e. CLat /\ ( X e. S /\ S C_ B ) ) -> ( U ` { X } ) = X ) |
| 9 | 8 | 3impb | |- ( ( K e. CLat /\ X e. S /\ S C_ B ) -> ( U ` { X } ) = X ) |
| 10 | snssi | |- ( X e. S -> { X } C_ S ) |
|
| 11 | 1 2 3 | lubss | |- ( ( K e. CLat /\ S C_ B /\ { X } C_ S ) -> ( U ` { X } ) .<_ ( U ` S ) ) |
| 12 | 10 11 | syl3an3 | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> ( U ` { X } ) .<_ ( U ` S ) ) |
| 13 | 12 | 3com23 | |- ( ( K e. CLat /\ X e. S /\ S C_ B ) -> ( U ` { X } ) .<_ ( U ` S ) ) |
| 14 | 9 13 | eqbrtrrd | |- ( ( K e. CLat /\ X e. S /\ S C_ B ) -> X .<_ ( U ` S ) ) |