This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proper subset is a linear ordering on positive reals. Part of Proposition 9-3.3 of Gleason p. 122. (Contributed by NM, 25-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psslinpr | |- ( ( A e. P. /\ B e. P. ) -> ( A C. B \/ A = B \/ B C. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq | |- ( ( A e. P. /\ x e. A ) -> x e. Q. ) |
|
| 2 | prub | |- ( ( ( B e. P. /\ y e. B ) /\ x e. Q. ) -> ( -. x e. B -> y |
|
| 3 | 1 2 | sylan2 | |- ( ( ( B e. P. /\ y e. B ) /\ ( A e. P. /\ x e. A ) ) -> ( -. x e. B -> y |
| 4 | prcdnq | |- ( ( A e. P. /\ x e. A ) -> ( yy e. A ) ) |
|
| 5 | 4 | adantl | |- ( ( ( B e. P. /\ y e. B ) /\ ( A e. P. /\ x e. A ) ) -> ( yy e. A ) ) |
| 6 | 3 5 | syld | |- ( ( ( B e. P. /\ y e. B ) /\ ( A e. P. /\ x e. A ) ) -> ( -. x e. B -> y e. A ) ) |
| 7 | 6 | exp43 | |- ( B e. P. -> ( y e. B -> ( A e. P. -> ( x e. A -> ( -. x e. B -> y e. A ) ) ) ) ) |
| 8 | 7 | com3r | |- ( A e. P. -> ( B e. P. -> ( y e. B -> ( x e. A -> ( -. x e. B -> y e. A ) ) ) ) ) |
| 9 | 8 | imp | |- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> ( x e. A -> ( -. x e. B -> y e. A ) ) ) ) |
| 10 | 9 | imp4a | |- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> ( ( x e. A /\ -. x e. B ) -> y e. A ) ) ) |
| 11 | 10 | com23 | |- ( ( A e. P. /\ B e. P. ) -> ( ( x e. A /\ -. x e. B ) -> ( y e. B -> y e. A ) ) ) |
| 12 | 11 | alrimdv | |- ( ( A e. P. /\ B e. P. ) -> ( ( x e. A /\ -. x e. B ) -> A. y ( y e. B -> y e. A ) ) ) |
| 13 | 12 | exlimdv | |- ( ( A e. P. /\ B e. P. ) -> ( E. x ( x e. A /\ -. x e. B ) -> A. y ( y e. B -> y e. A ) ) ) |
| 14 | nss | |- ( -. A C_ B <-> E. x ( x e. A /\ -. x e. B ) ) |
|
| 15 | sspss | |- ( A C_ B <-> ( A C. B \/ A = B ) ) |
|
| 16 | 14 15 | xchnxbi | |- ( -. ( A C. B \/ A = B ) <-> E. x ( x e. A /\ -. x e. B ) ) |
| 17 | sspss | |- ( B C_ A <-> ( B C. A \/ B = A ) ) |
|
| 18 | df-ss | |- ( B C_ A <-> A. y ( y e. B -> y e. A ) ) |
|
| 19 | 17 18 | bitr3i | |- ( ( B C. A \/ B = A ) <-> A. y ( y e. B -> y e. A ) ) |
| 20 | 13 16 19 | 3imtr4g | |- ( ( A e. P. /\ B e. P. ) -> ( -. ( A C. B \/ A = B ) -> ( B C. A \/ B = A ) ) ) |
| 21 | 20 | orrd | |- ( ( A e. P. /\ B e. P. ) -> ( ( A C. B \/ A = B ) \/ ( B C. A \/ B = A ) ) ) |
| 22 | df-3or | |- ( ( A C. B \/ A = B \/ B C. A ) <-> ( ( A C. B \/ A = B ) \/ B C. A ) ) |
|
| 23 | or32 | |- ( ( ( A C. B \/ A = B ) \/ B C. A ) <-> ( ( A C. B \/ B C. A ) \/ A = B ) ) |
|
| 24 | orordir | |- ( ( ( A C. B \/ B C. A ) \/ A = B ) <-> ( ( A C. B \/ A = B ) \/ ( B C. A \/ A = B ) ) ) |
|
| 25 | eqcom | |- ( B = A <-> A = B ) |
|
| 26 | 25 | orbi2i | |- ( ( B C. A \/ B = A ) <-> ( B C. A \/ A = B ) ) |
| 27 | 26 | orbi2i | |- ( ( ( A C. B \/ A = B ) \/ ( B C. A \/ B = A ) ) <-> ( ( A C. B \/ A = B ) \/ ( B C. A \/ A = B ) ) ) |
| 28 | 24 27 | bitr4i | |- ( ( ( A C. B \/ B C. A ) \/ A = B ) <-> ( ( A C. B \/ A = B ) \/ ( B C. A \/ B = A ) ) ) |
| 29 | 22 23 28 | 3bitri | |- ( ( A C. B \/ A = B \/ B C. A ) <-> ( ( A C. B \/ A = B ) \/ ( B C. A \/ B = A ) ) ) |
| 30 | 21 29 | sylibr | |- ( ( A e. P. /\ B e. P. ) -> ( A C. B \/ A = B \/ B C. A ) ) |