This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issoi.1 | |- ( x e. A -> -. x R x ) |
|
| issoi.2 | |- ( ( x e. A /\ y e. A /\ z e. A ) -> ( ( x R y /\ y R z ) -> x R z ) ) |
||
| issoi.3 | |- ( ( x e. A /\ y e. A ) -> ( x R y \/ x = y \/ y R x ) ) |
||
| Assertion | issoi | |- R Or A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issoi.1 | |- ( x e. A -> -. x R x ) |
|
| 2 | issoi.2 | |- ( ( x e. A /\ y e. A /\ z e. A ) -> ( ( x R y /\ y R z ) -> x R z ) ) |
|
| 3 | issoi.3 | |- ( ( x e. A /\ y e. A ) -> ( x R y \/ x = y \/ y R x ) ) |
|
| 4 | 1 | adantl | |- ( ( T. /\ x e. A ) -> -. x R x ) |
| 5 | 2 | adantl | |- ( ( T. /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x R y /\ y R z ) -> x R z ) ) |
| 6 | 4 5 | ispod | |- ( T. -> R Po A ) |
| 7 | 3 | adantl | |- ( ( T. /\ ( x e. A /\ y e. A ) ) -> ( x R y \/ x = y \/ y R x ) ) |
| 8 | 6 7 | issod | |- ( T. -> R Or A ) |
| 9 | 8 | mptru | |- R Or A |