This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for proper subclass. Theorem 9 of Suppes p. 23. (Contributed by NM, 7-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psstr | |- ( ( A C. B /\ B C. C ) -> A C. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssss | |- ( A C. B -> A C_ B ) |
|
| 2 | pssss | |- ( B C. C -> B C_ C ) |
|
| 3 | 1 2 | sylan9ss | |- ( ( A C. B /\ B C. C ) -> A C_ C ) |
| 4 | pssn2lp | |- -. ( C C. B /\ B C. C ) |
|
| 5 | psseq1 | |- ( A = C -> ( A C. B <-> C C. B ) ) |
|
| 6 | 5 | anbi1d | |- ( A = C -> ( ( A C. B /\ B C. C ) <-> ( C C. B /\ B C. C ) ) ) |
| 7 | 4 6 | mtbiri | |- ( A = C -> -. ( A C. B /\ B C. C ) ) |
| 8 | 7 | con2i | |- ( ( A C. B /\ B C. C ) -> -. A = C ) |
| 9 | dfpss2 | |- ( A C. C <-> ( A C_ C /\ -. A = C ) ) |
|
| 10 | 3 8 9 | sylanbrc | |- ( ( A C. B /\ B C. C ) -> A C. C ) |