This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict ordering law for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltexp2 | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( M < N <-> ( A ^ M ) < ( A ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = y -> ( A ^ x ) = ( A ^ y ) ) |
|
| 2 | oveq2 | |- ( x = M -> ( A ^ x ) = ( A ^ M ) ) |
|
| 3 | oveq2 | |- ( x = N -> ( A ^ x ) = ( A ^ N ) ) |
|
| 4 | zssre | |- ZZ C_ RR |
|
| 5 | simpl | |- ( ( A e. RR /\ 1 < A ) -> A e. RR ) |
|
| 6 | 0red | |- ( ( A e. RR /\ 1 < A ) -> 0 e. RR ) |
|
| 7 | 1red | |- ( ( A e. RR /\ 1 < A ) -> 1 e. RR ) |
|
| 8 | 0lt1 | |- 0 < 1 |
|
| 9 | 8 | a1i | |- ( ( A e. RR /\ 1 < A ) -> 0 < 1 ) |
| 10 | simpr | |- ( ( A e. RR /\ 1 < A ) -> 1 < A ) |
|
| 11 | 6 7 5 9 10 | lttrd | |- ( ( A e. RR /\ 1 < A ) -> 0 < A ) |
| 12 | 5 11 | elrpd | |- ( ( A e. RR /\ 1 < A ) -> A e. RR+ ) |
| 13 | rpexpcl | |- ( ( A e. RR+ /\ x e. ZZ ) -> ( A ^ x ) e. RR+ ) |
|
| 14 | 12 13 | sylan | |- ( ( ( A e. RR /\ 1 < A ) /\ x e. ZZ ) -> ( A ^ x ) e. RR+ ) |
| 15 | 14 | rpred | |- ( ( ( A e. RR /\ 1 < A ) /\ x e. ZZ ) -> ( A ^ x ) e. RR ) |
| 16 | simpll | |- ( ( ( A e. RR /\ 1 < A ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. RR ) |
|
| 17 | simprl | |- ( ( ( A e. RR /\ 1 < A ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
|
| 18 | simprr | |- ( ( ( A e. RR /\ 1 < A ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
|
| 19 | simplr | |- ( ( ( A e. RR /\ 1 < A ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> 1 < A ) |
|
| 20 | ltexp2a | |- ( ( ( A e. RR /\ x e. ZZ /\ y e. ZZ ) /\ ( 1 < A /\ x < y ) ) -> ( A ^ x ) < ( A ^ y ) ) |
|
| 21 | 20 | expr | |- ( ( ( A e. RR /\ x e. ZZ /\ y e. ZZ ) /\ 1 < A ) -> ( x < y -> ( A ^ x ) < ( A ^ y ) ) ) |
| 22 | 16 17 18 19 21 | syl31anc | |- ( ( ( A e. RR /\ 1 < A ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x < y -> ( A ^ x ) < ( A ^ y ) ) ) |
| 23 | 1 2 3 4 15 22 | ltord1 | |- ( ( ( A e. RR /\ 1 < A ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M < N <-> ( A ^ M ) < ( A ^ N ) ) ) |
| 24 | 23 | ancom2s | |- ( ( ( A e. RR /\ 1 < A ) /\ ( N e. ZZ /\ M e. ZZ ) ) -> ( M < N <-> ( A ^ M ) < ( A ^ N ) ) ) |
| 25 | 24 | exp43 | |- ( A e. RR -> ( 1 < A -> ( N e. ZZ -> ( M e. ZZ -> ( M < N <-> ( A ^ M ) < ( A ^ N ) ) ) ) ) ) |
| 26 | 25 | com24 | |- ( A e. RR -> ( M e. ZZ -> ( N e. ZZ -> ( 1 < A -> ( M < N <-> ( A ^ M ) < ( A ^ N ) ) ) ) ) ) |
| 27 | 26 | 3imp1 | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( M < N <-> ( A ^ M ) < ( A ^ N ) ) ) |