This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of vector addition in a subspace. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssvacl.p | |- .+ = ( +g ` W ) |
|
| lssvacl.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lssvacl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( X .+ Y ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssvacl.p | |- .+ = ( +g ` W ) |
|
| 2 | lssvacl.s | |- S = ( LSubSp ` W ) |
|
| 3 | simpll | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> W e. LMod ) |
|
| 4 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 5 | 4 2 | lssel | |- ( ( U e. S /\ X e. U ) -> X e. ( Base ` W ) ) |
| 6 | 5 | ad2ant2lr | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> X e. ( Base ` W ) ) |
| 7 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 8 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 9 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 10 | 4 7 8 9 | lmodvs1 | |- ( ( W e. LMod /\ X e. ( Base ` W ) ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) = X ) |
| 11 | 3 6 10 | syl2anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) = X ) |
| 12 | 11 | oveq1d | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) .+ Y ) = ( X .+ Y ) ) |
| 13 | simplr | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> U e. S ) |
|
| 14 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 15 | 7 14 9 | lmod1cl | |- ( W e. LMod -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 16 | 15 | ad2antrr | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 17 | simprl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> X e. U ) |
|
| 18 | simprr | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> Y e. U ) |
|
| 19 | 7 14 1 8 2 | lsscl | |- ( ( U e. S /\ ( ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) /\ X e. U /\ Y e. U ) ) -> ( ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) .+ Y ) e. U ) |
| 20 | 13 16 17 18 19 | syl13anc | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) X ) .+ Y ) e. U ) |
| 21 | 12 20 | eqeltrrd | |- ( ( ( W e. LMod /\ U e. S ) /\ ( X e. U /\ Y e. U ) ) -> ( X .+ Y ) e. U ) |