This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle-type inequality for span of a singleton. (Contributed by NM, 24-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsntri.v | |- V = ( Base ` W ) |
|
| lspsntri.a | |- .+ = ( +g ` W ) |
||
| lspsntri.n | |- N = ( LSpan ` W ) |
||
| lspsntri.p | |- .(+) = ( LSSum ` W ) |
||
| Assertion | lspsntri | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { ( X .+ Y ) } ) C_ ( ( N ` { X } ) .(+) ( N ` { Y } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsntri.v | |- V = ( Base ` W ) |
|
| 2 | lspsntri.a | |- .+ = ( +g ` W ) |
|
| 3 | lspsntri.n | |- N = ( LSpan ` W ) |
|
| 4 | lspsntri.p | |- .(+) = ( LSSum ` W ) |
|
| 5 | 1 2 3 | lspvadd | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { ( X .+ Y ) } ) C_ ( N ` { X , Y } ) ) |
| 6 | df-pr | |- { X , Y } = ( { X } u. { Y } ) |
|
| 7 | 6 | fveq2i | |- ( N ` { X , Y } ) = ( N ` ( { X } u. { Y } ) ) |
| 8 | 5 7 | sseqtrdi | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { ( X .+ Y ) } ) C_ ( N ` ( { X } u. { Y } ) ) ) |
| 9 | simp1 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> W e. LMod ) |
|
| 10 | simp2 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> X e. V ) |
|
| 11 | 10 | snssd | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> { X } C_ V ) |
| 12 | simp3 | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> Y e. V ) |
|
| 13 | 12 | snssd | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> { Y } C_ V ) |
| 14 | 1 3 4 | lsmsp2 | |- ( ( W e. LMod /\ { X } C_ V /\ { Y } C_ V ) -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( N ` ( { X } u. { Y } ) ) ) |
| 15 | 9 11 13 14 | syl3anc | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( N ` ( { X } u. { Y } ) ) ) |
| 16 | 8 15 | sseqtrrd | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( N ` { ( X .+ Y ) } ) C_ ( ( N ` { X } ) .(+) ( N ` { Y } ) ) ) |