This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that a vector belongs to the span of a pair of vectors. (Contributed by NM, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmelpr.v | |- V = ( Base ` W ) |
|
| lsmelpr.n | |- N = ( LSpan ` W ) |
||
| lsmelpr.p | |- .(+) = ( LSSum ` W ) |
||
| lsmelpr.w | |- ( ph -> W e. LMod ) |
||
| lsmelpr.x | |- ( ph -> X e. V ) |
||
| lsmelpr.y | |- ( ph -> Y e. V ) |
||
| lsmelpr.z | |- ( ph -> Z e. V ) |
||
| Assertion | lsmelpr | |- ( ph -> ( X e. ( N ` { Y , Z } ) <-> ( N ` { X } ) C_ ( ( N ` { Y } ) .(+) ( N ` { Z } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmelpr.v | |- V = ( Base ` W ) |
|
| 2 | lsmelpr.n | |- N = ( LSpan ` W ) |
|
| 3 | lsmelpr.p | |- .(+) = ( LSSum ` W ) |
|
| 4 | lsmelpr.w | |- ( ph -> W e. LMod ) |
|
| 5 | lsmelpr.x | |- ( ph -> X e. V ) |
|
| 6 | lsmelpr.y | |- ( ph -> Y e. V ) |
|
| 7 | lsmelpr.z | |- ( ph -> Z e. V ) |
|
| 8 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 9 | 1 8 2 4 6 7 | lspprcl | |- ( ph -> ( N ` { Y , Z } ) e. ( LSubSp ` W ) ) |
| 10 | 1 8 2 4 9 5 | ellspsn5b | |- ( ph -> ( X e. ( N ` { Y , Z } ) <-> ( N ` { X } ) C_ ( N ` { Y , Z } ) ) ) |
| 11 | 1 2 3 4 6 7 | lsmpr | |- ( ph -> ( N ` { Y , Z } ) = ( ( N ` { Y } ) .(+) ( N ` { Z } ) ) ) |
| 12 | 11 | sseq2d | |- ( ph -> ( ( N ` { X } ) C_ ( N ` { Y , Z } ) <-> ( N ` { X } ) C_ ( ( N ` { Y } ) .(+) ( N ` { Z } ) ) ) ) |
| 13 | 10 12 | bitrd | |- ( ph -> ( X e. ( N ` { Y , Z } ) <-> ( N ` { X } ) C_ ( ( N ` { Y } ) .(+) ( N ` { Z } ) ) ) ) |