This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a pair of vectors equals the sum of the spans of their singletons. (Contributed by NM, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmpr.v | |- V = ( Base ` W ) |
|
| lsmpr.n | |- N = ( LSpan ` W ) |
||
| lsmpr.p | |- .(+) = ( LSSum ` W ) |
||
| lsmpr.w | |- ( ph -> W e. LMod ) |
||
| lsmpr.x | |- ( ph -> X e. V ) |
||
| lsmpr.y | |- ( ph -> Y e. V ) |
||
| Assertion | lsmpr | |- ( ph -> ( N ` { X , Y } ) = ( ( N ` { X } ) .(+) ( N ` { Y } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmpr.v | |- V = ( Base ` W ) |
|
| 2 | lsmpr.n | |- N = ( LSpan ` W ) |
|
| 3 | lsmpr.p | |- .(+) = ( LSSum ` W ) |
|
| 4 | lsmpr.w | |- ( ph -> W e. LMod ) |
|
| 5 | lsmpr.x | |- ( ph -> X e. V ) |
|
| 6 | lsmpr.y | |- ( ph -> Y e. V ) |
|
| 7 | 5 | snssd | |- ( ph -> { X } C_ V ) |
| 8 | 6 | snssd | |- ( ph -> { Y } C_ V ) |
| 9 | 1 2 | lspun | |- ( ( W e. LMod /\ { X } C_ V /\ { Y } C_ V ) -> ( N ` ( { X } u. { Y } ) ) = ( N ` ( ( N ` { X } ) u. ( N ` { Y } ) ) ) ) |
| 10 | 4 7 8 9 | syl3anc | |- ( ph -> ( N ` ( { X } u. { Y } ) ) = ( N ` ( ( N ` { X } ) u. ( N ` { Y } ) ) ) ) |
| 11 | df-pr | |- { X , Y } = ( { X } u. { Y } ) |
|
| 12 | 11 | fveq2i | |- ( N ` { X , Y } ) = ( N ` ( { X } u. { Y } ) ) |
| 13 | 12 | a1i | |- ( ph -> ( N ` { X , Y } ) = ( N ` ( { X } u. { Y } ) ) ) |
| 14 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 15 | 1 14 2 | lspsncl | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 16 | 4 5 15 | syl2anc | |- ( ph -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 17 | 1 14 2 | lspsncl | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 18 | 4 6 17 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 19 | 14 2 3 | lsmsp | |- ( ( W e. LMod /\ ( N ` { X } ) e. ( LSubSp ` W ) /\ ( N ` { Y } ) e. ( LSubSp ` W ) ) -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( N ` ( ( N ` { X } ) u. ( N ` { Y } ) ) ) ) |
| 20 | 4 16 18 19 | syl3anc | |- ( ph -> ( ( N ` { X } ) .(+) ( N ` { Y } ) ) = ( N ` ( ( N ` { X } ) u. ( N ` { Y } ) ) ) ) |
| 21 | 10 13 20 | 3eqtr4d | |- ( ph -> ( N ` { X , Y } ) = ( ( N ` { X } ) .(+) ( N ` { Y } ) ) ) |