This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span function on a left module maps subsets to subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspval.v | |- V = ( Base ` W ) |
|
| lspval.s | |- S = ( LSubSp ` W ) |
||
| lspval.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspf | |- ( W e. LMod -> N : ~P V --> S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.v | |- V = ( Base ` W ) |
|
| 2 | lspval.s | |- S = ( LSubSp ` W ) |
|
| 3 | lspval.n | |- N = ( LSpan ` W ) |
|
| 4 | 1 2 3 | lspfval | |- ( W e. LMod -> N = ( s e. ~P V |-> |^| { p e. S | s C_ p } ) ) |
| 5 | simpl | |- ( ( W e. LMod /\ s e. ~P V ) -> W e. LMod ) |
|
| 6 | ssrab2 | |- { p e. S | s C_ p } C_ S |
|
| 7 | 6 | a1i | |- ( ( W e. LMod /\ s e. ~P V ) -> { p e. S | s C_ p } C_ S ) |
| 8 | 1 2 | lss1 | |- ( W e. LMod -> V e. S ) |
| 9 | elpwi | |- ( s e. ~P V -> s C_ V ) |
|
| 10 | sseq2 | |- ( p = V -> ( s C_ p <-> s C_ V ) ) |
|
| 11 | 10 | rspcev | |- ( ( V e. S /\ s C_ V ) -> E. p e. S s C_ p ) |
| 12 | 8 9 11 | syl2an | |- ( ( W e. LMod /\ s e. ~P V ) -> E. p e. S s C_ p ) |
| 13 | rabn0 | |- ( { p e. S | s C_ p } =/= (/) <-> E. p e. S s C_ p ) |
|
| 14 | 12 13 | sylibr | |- ( ( W e. LMod /\ s e. ~P V ) -> { p e. S | s C_ p } =/= (/) ) |
| 15 | 2 | lssintcl | |- ( ( W e. LMod /\ { p e. S | s C_ p } C_ S /\ { p e. S | s C_ p } =/= (/) ) -> |^| { p e. S | s C_ p } e. S ) |
| 16 | 5 7 14 15 | syl3anc | |- ( ( W e. LMod /\ s e. ~P V ) -> |^| { p e. S | s C_ p } e. S ) |
| 17 | 4 16 | fmpt3d | |- ( W e. LMod -> N : ~P V --> S ) |