This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspdisjb.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspdisjb.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspdisjb.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspdisjb.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspdisjb.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspdisjb.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lspdisjb.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
| Assertion | lspdisjb | ⊢ ( 𝜑 → ( ¬ 𝑋 ∈ 𝑈 ↔ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspdisjb.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspdisjb.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspdisjb.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspdisjb.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 5 | lspdisjb.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 6 | lspdisjb.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 7 | lspdisjb.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | |
| 8 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑈 ) → 𝑊 ∈ LVec ) |
| 9 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 10 | 7 | eldifad | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑈 ) → ¬ 𝑋 ∈ 𝑈 ) | |
| 13 | 1 2 3 4 8 9 11 12 | lspdisj | ⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑈 ) → ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) |
| 14 | eldifsni | ⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) | |
| 15 | 7 14 | syl | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) → 𝑋 ≠ 0 ) |
| 17 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 18 | 5 17 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 19 | 1 3 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 20 | 18 10 19 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 21 | elin | ⊢ ( 𝑋 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) ↔ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑋 ∈ 𝑈 ) ) | |
| 22 | eleq2 | ⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } → ( 𝑋 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) ↔ 𝑋 ∈ { 0 } ) ) | |
| 23 | elsni | ⊢ ( 𝑋 ∈ { 0 } → 𝑋 = 0 ) | |
| 24 | 22 23 | biimtrdi | ⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } → ( 𝑋 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) → 𝑋 = 0 ) ) |
| 25 | 21 24 | biimtrrid | ⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } → ( ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑋 ∈ 𝑈 ) → 𝑋 = 0 ) ) |
| 26 | 25 | expd | ⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) → ( 𝑋 ∈ 𝑈 → 𝑋 = 0 ) ) ) |
| 27 | 20 26 | mpan9 | ⊢ ( ( 𝜑 ∧ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) → ( 𝑋 ∈ 𝑈 → 𝑋 = 0 ) ) |
| 28 | 27 | necon3ad | ⊢ ( ( 𝜑 ∧ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) → ( 𝑋 ≠ 0 → ¬ 𝑋 ∈ 𝑈 ) ) |
| 29 | 16 28 | mpd | ⊢ ( ( 𝜑 ∧ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) → ¬ 𝑋 ∈ 𝑈 ) |
| 30 | 13 29 | impbida | ⊢ ( 𝜑 → ( ¬ 𝑋 ∈ 𝑈 ↔ ( ( 𝑁 ‘ { 𝑋 } ) ∩ 𝑈 ) = { 0 } ) ) |