This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum (in its extended domain) is a subset of the span of the union of its arguments. (Contributed by NM, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmsp2.v | |- V = ( Base ` W ) |
|
| lsmsp2.n | |- N = ( LSpan ` W ) |
||
| lsmsp2.p | |- .(+) = ( LSSum ` W ) |
||
| lsmssspx.t | |- ( ph -> T C_ V ) |
||
| lsmssspx.u | |- ( ph -> U C_ V ) |
||
| lsmssspx.w | |- ( ph -> W e. LMod ) |
||
| Assertion | lsmssspx | |- ( ph -> ( T .(+) U ) C_ ( N ` ( T u. U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsp2.v | |- V = ( Base ` W ) |
|
| 2 | lsmsp2.n | |- N = ( LSpan ` W ) |
|
| 3 | lsmsp2.p | |- .(+) = ( LSSum ` W ) |
|
| 4 | lsmssspx.t | |- ( ph -> T C_ V ) |
|
| 5 | lsmssspx.u | |- ( ph -> U C_ V ) |
|
| 6 | lsmssspx.w | |- ( ph -> W e. LMod ) |
|
| 7 | 1 2 | lspssv | |- ( ( W e. LMod /\ T C_ V ) -> ( N ` T ) C_ V ) |
| 8 | 6 4 7 | syl2anc | |- ( ph -> ( N ` T ) C_ V ) |
| 9 | 1 2 | lspssid | |- ( ( W e. LMod /\ T C_ V ) -> T C_ ( N ` T ) ) |
| 10 | 6 4 9 | syl2anc | |- ( ph -> T C_ ( N ` T ) ) |
| 11 | 1 3 | lsmless1x | |- ( ( ( W e. LMod /\ ( N ` T ) C_ V /\ U C_ V ) /\ T C_ ( N ` T ) ) -> ( T .(+) U ) C_ ( ( N ` T ) .(+) U ) ) |
| 12 | 6 8 5 10 11 | syl31anc | |- ( ph -> ( T .(+) U ) C_ ( ( N ` T ) .(+) U ) ) |
| 13 | 1 2 | lspssv | |- ( ( W e. LMod /\ U C_ V ) -> ( N ` U ) C_ V ) |
| 14 | 6 5 13 | syl2anc | |- ( ph -> ( N ` U ) C_ V ) |
| 15 | 1 2 | lspssid | |- ( ( W e. LMod /\ U C_ V ) -> U C_ ( N ` U ) ) |
| 16 | 6 5 15 | syl2anc | |- ( ph -> U C_ ( N ` U ) ) |
| 17 | 1 3 | lsmless2x | |- ( ( ( W e. LMod /\ ( N ` T ) C_ V /\ ( N ` U ) C_ V ) /\ U C_ ( N ` U ) ) -> ( ( N ` T ) .(+) U ) C_ ( ( N ` T ) .(+) ( N ` U ) ) ) |
| 18 | 6 8 14 16 17 | syl31anc | |- ( ph -> ( ( N ` T ) .(+) U ) C_ ( ( N ` T ) .(+) ( N ` U ) ) ) |
| 19 | 12 18 | sstrd | |- ( ph -> ( T .(+) U ) C_ ( ( N ` T ) .(+) ( N ` U ) ) ) |
| 20 | 1 2 3 | lsmsp2 | |- ( ( W e. LMod /\ T C_ V /\ U C_ V ) -> ( ( N ` T ) .(+) ( N ` U ) ) = ( N ` ( T u. U ) ) ) |
| 21 | 6 4 5 20 | syl3anc | |- ( ph -> ( ( N ` T ) .(+) ( N ` U ) ) = ( N ` ( T u. U ) ) ) |
| 22 | 19 21 | sseqtrd | |- ( ph -> ( T .(+) U ) C_ ( N ` ( T u. U ) ) ) |